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Abstract

Extensive numerical integration results lead us to conjecture thaltree meanthat is,ong =
V2 — 1~ 0.414214 plays a fundamental role in certain geometries (those given by monotone metrics)
imposable on the 15-dimensional convex set of two-qubit systems. For example, we hypothesize that
the volume of separable two-qubit states, as measured in terms of (four times) the minimal monotone
or Bures metric i$rag/3, and 1@,4 in terms of (four times) the Kubo—Mori monotone metric. Also,
we conjecture, in terms of (four times) the Bures metric, that part of the 14-dimensional boundary of
separable states consisting generically of remk-4 x 4 density matrices has volume (“hyperarea”)
550a¢/39, and that part composed of rattkee density matrices, 484/39, so thetotal boundary
hyperarea would be 834/39. While the Bureprobability of separability £0.07334) dominates that
(~0.050339) based on the Wigner—Yanase metric (and all other monotone metrics) for rank-four states,
the Wigner—Yanasex{0.18228) strongly dominates the Bures0(03982) for the rank-three states.
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1. Introduction
1.1. Background

An arbitrary state of two quantum bits (qubits) is describable byxadddensity matrix
(Dg)—an Hermitian, nonnegative definite matrix having trace unity. The convex set of all
such density matrices is 15-dimensional in nafir2]. Endowing this set with the statistical
distinguishability (SD) metri¢3] (identically four times the Bures [minimal monotone]
metric[3]), we addressed ii] the question (first essentially raised in the pioneering study
[5], and investigated further if6—8]) of what proportion of the 15-dimensional convex
set (now a Riemannian manifold) is separable (classically correlated) in f@juihis
pertains to the question of manifest interest “Is the world more classical or more quantum?”
[5].

The Peres—Horodecki partial transposition critefib®,11] provides a convenient nec-
essaryand sufficient condition for testing for separability in the cases of qubit—qubit (as
well as qubit—qutrit) pair§l2]. That is, if one transposes in place the foux 2 blocks of
Dy, then in the case that the four eigenvalues of the resultant matral ax@nnegative—or
more simply, if its determinant is nonnegatii3, Theorem 5}-D, itself is separable.

Sommers andyczkowski[14, Eq. (4.12)have recently established (confirming en pas-
sant certain conjectures of Slaféb]) that the Bures volume of thev€ — 1)-dimensional
convex set of complex density matricd3y) of sizeN is equal to

21-N?2_ N?/2
[(N2/2)

For the only specific case of interest hele= 4, this gives us for the total Bures volume,

1)

8
vitn — T~ 574538x 1075, 2
Bures ™ 165150720 ) @)
where superscriggdenotes the set of separable and the supersctifg (complementary)
set of nonseparablex 4 density matrices. (The comparable volume based oHithert—
Schmidimetric—which induces thitat, Euclidean geometry into the set of mixed quantum
states—ig/t" = 7%/851350500~ 1.12925x 106 [16, Eq. (4.5)]) The volumeVg . is

Bures

exactlyequal to that of a 15-dimensiortalf sphere with radius/2 [14]. Now, additionally,

8
Vs+n _ 215Vs+n _

b
SD = Bures = M ~ 1.882645 (3)

So, Vgg" is itself exactly equal to one-half the volume (“surface area”) of a 15-dimensional
sphere of radius 1. (The full sphere of total surface aré®520= 2V§J,5” sits in 16-
dimensional Euclidean space and bounds the unit ball there.)
One of the objectives in this study is to accurately estimate the included vdlidme
Then, we could, in turn, obtain a good estimate of the SD/Bures probability of separability.
VgD N Véures

SD s+n Bures s+n °
VSD VBures
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Also, we could gain evidence as to possibl@ctvalues, which on the basis of previous
lower dimensional analys¢8], we have been led to believe is a distinct possibility.

We had already undertaken this task[#] (seeking there to exploit the then just-
developed Euler angle parameterization of the 4 density matricegl7]). The analysis
was, however, in retrospect, based on a relatively small number (65 million) of points, gen-
erated in the underlying quasi-Monte Carlo procedure (scrambled Halton sequences) (cf.
[18,19). (Substantial computer assets were required, nonetheless. Numerical integration
in high-dimensional spaces is a particularly challenging computational task.) One of the
classical “low-discrepancy” sequences istiaa der Corpusequence in base whereb is
any integer greater than one. The uniformity of the van der Corput numbers can be further
improved by permuting/scrambling the coefficients in the digit expansidwiafbaseb.
The scrambled Halton sequenceNrdimensions—which we employed 4] and in our
auxiliary analyses belovsection 4—is constructed using the so-scrambled van der Corput
numbers foib’s ranging over the firsN prime number$19, p. 53]

To facilitate comparisons with the results of Sommersayakzkowski[14], which were
reported subsequent to our analysi#dh) we need to both divide the estimates givefdih
by 4! = 24 to take into account the strict ordering of the four eigenvaluég@mployed by
Sommers andyczkowski[14, Eq. (3.23)]as well as to multiply them by 8, since we (due to
a confusion of scaling constants) only, in effect, used a factofoh24, Eqgs. (5)—(7)father
than one of 3°, as indicated above in (3) is required. These two independent adjustments
together amount to a multiplication by 34 = 1/3. This means that the estimatekgfg"
(the true value of which, as given above, is known ta41e882645) from the quasi-Monte
Carlo analysis irf4], should be taken to be88284= 5.6485Y 3; the estimate oV, from
[4] should, similarly, be considered to bel88767= 0.4163023; and of g, (for which
no adjustment is needed, being a ratio), 0.0737012.

We had been led i#]—if only for numerical rather than any clear conceptual reasons—
to formulate a conjecture that (after adjustment by the indicated factoy3)f dan be
expressed here as

6

T
$y=——=0.13872 5
Ysp = 5930 9 )
as well as that
s s 8
Pp = Pgures= 102 ~ 0.0736881 (6)

(suggesting that the [quantum] “world"—even in the case of only two qubits—is consider-
ably “more quantum than classical”). We now must view (5) and (6), but approximations to
the revised conjectures (15) and (16) below, obtained on the basis of such larger quasi-Monte
Carlo calculations.

1.2. Monotone metrics and quasi-Monte Carlo procedures

The Bures metric plays the role of th@nimalmonotone metric. The monotone metrics
comprise an infinite (hondenumerable) clg%-22] generalizing the (classicallynique
Fisher information metrif23]. The Bures metric has certainly been the most widely studied
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member of this clag8,14,24—-27]For the infinitesimal distance element between two states
D4 and Dy + §Dg4, we have

(dsgure® = 32k (hj + ) "H(j18Dalk) |2, ©)

whereDy is diagonal in the orthonormal badig)} with eigenvaluega ;}.

Two other prominent members are thaximalmonotone metri¢28] and theKubo—

Mori (KM) [29-31] (also termed Bogoliubov—Kubo—Mori and Chentg82]) monotone
metric. The Kubo—Mori metric (or canonical correlation stemming from differentiation
of the relative entropy) is, up to a scale factor, thequemonotone Riemannian metric
with respect to which the exponential and mixture connectionslaaé[32], and as such,
certainly merits further attention.

In this study, we will utilize additional computer power recently available to us, to-
gether withanotheradvanced quasi-Monte Carlo procedure (scrambled Faure—Tezuka se-
quenceg33]—the use of which was recommended to us byGkten, who provided a
corresponding MATHEMATICA code). Faure and Tezuka were guided “by the construc-
tion () = A pii—1) and by some possible extensions of the generator formal series in the
framework of Neiderreiter”.4® is an arbitrary nonsingular lower triangular [NLT] matrix,

P is the Pascal matrif34] andC() is a generator matrix of a sequerX@ Their idea was

to multiply from the right by nonsingular upper triangular (NUT) random matrices and
get the new generator matrice§) = P(—Dy(® for (0, s)-sequencef33]. “Faure—Tezuka
scrambling scrambles the digits iobefore multiplying by the generator matrices The

effect of the Faure—Tezuka scrambling can be thought of as reordering the original se-
guence, rather than permuting its digits like the Owen scramblin§crambled sequences
often have smaller discrepancies than their nonscrambled counterparts. Moreover, random
scramblings facilitate error estimatiof85, p. 107]

The Faure—Tezuka procedure appears to us to be exceptionally successful in generating a
highly uniform (low discrepancfB6]) distribution of points over the hypercube—as judged
by its yielding an estimate of 1.88264 fdiigg” ~ 1.882645. However, at this stage, the
procedureloeshave the arguable shortcoming that it does not readily lend itself to the use of
“error bars” for the estimates it produces, as quite naturally do (the generally considerably
less efficient) Monte Carlo methods (which, of course, distribute points on the basis of
pseudorandom, rather than deterministic, methods).

“It is easier to estimate the error of Monte Carlo methods because one can perform a
number of replications and compute the variance. Clever randomizations of quasi-Monte
Carlo methods combine higher accuracy with practical error estimf@&s’p. 95] G.

Okten is presently developing a MATHEMATICA version of the scrambled Faure—Tezuka
sequence in which there will be a random generating matrix for each dimension— rather
than one for all [15] dimensions—which will then be susceptible to statistical ted&tijg

1.3. Morozova—Chentsov functions

To study such monotone metriether than the SD/Bures one, we will utilize a
certain ansatz (cf[7]). Contained in the formuld14, Eq. (3.18)]of Sommers and
Zyczkowski for the “Bures volume of the set of mixed quantum states” is the subexpression
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(following their notation),

(ov — IOIL)Z
Oy =Tz ——— (8)
Ry A+ Pu

wherep,, o, (u, v=1,..., N) denote the eigenvalues of &hx N density matrix Oy).
The term (8) can equivalently be rewritten using the “Morozova—Chentsov” function for
the Bures metri¢l4, Eq. (2.18)]

CBures(/O;u pv) = 9)

Pv+ Pu '
as

On = %H%Qﬁ](pv - pu)ZCBurei,OM, Ov). (10)

A Morozova—Chentsov function is a positive continuous functi@n w) that is symmetric

in its two variables and for which(x, 1) = CA~1, for some constant, andc(r, 1) =
t~Le(r, n) [21, Theorem 1.1]There exist one-to-one correspondences between Morozova—
Chentsov functions, monotone metrics and operator mgahsCorollary 6] “Operator
means are binary operations on positive operators which fulfill the main requirements of
monotonicity and the transformer inequalif21].

The ansatz we employ is that the replacementggfed 0., pv) in the formulas for the
Bures volume element by the particular Morozova—Chentsov function corresponding to a
given monotone metriayj will yield the volume element corresponding to that particglar
We have been readily able to validate this for a number of instances in the casévedthe
level quantum systemsV[ = 2], using the general formula for the monotone metrics over
such systems of Petz and $ufR0, Eq. (3.17)] One can argue that the joint distribution of
the eigenvalues adby is the product ofp y—pertaining to the off-diagonal elements of the
density matrix—-and an additional factéty—pertaining to the diagonal elements. Now,
Hy is equal to the reciprocal of the square root of the determinant of the density matrix
for all [Fisher-adjusted] monotone metrics—so we need not be concerned with its variation
across metrics in this study—and simply unity in the case of the [flat] Hilbert—Schmidt
metric (cf.[37]).

1.4. Outline of the study

In addition to studying the SD/Bures metric, we ask analogous questions in relation
to a number of other monotone metrics of interest. We study two of these metrics, in
addition to the SD metric, in our “main analysiSéction 3 and two more in our “auxiliary
analysis” Section 4, which is based on the same scrambled Halton procedure employed
in [4]—but with more than five times the number of points generated there, but also many
fewer points than in the primary (main) analysis here. (In hindsight, we might have better
consolidated the several monotone metrics irgngleinvestigation, from the very outset,
but our initial/tentative/exploratory analyses grew, and we were highly reluctant to discard
several weeks worth of demanding and apparently revealing computations. Also, we had
been using two different sets of processors [Macs and Suns] for our computations and for
a number of reasons—too involved and idiosyncratic to make the subject of discussion
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here—it proved convenient to conduato distinct analyses.) Also, we include analyses in
Section Jertaining to thenaximalmonotone metric, and a number of metrics interpolated
between the minimal and maximal ones. (The “average” monotone metric—studied in
our main analysisection 3—is obtained by such an interpolation.) 8ection 6we

apply Monte Carlo methods in a limited study of the questions raised befdgedtion 7

we undertake studies concerned with the values of volumes (“surface areas”) of the 14-
dimensionaboundaryof the 15-dimensional convex set of two-qubit states, as measured
in terms of the various monotone metrics under investigation here.

To begin with Section 23, we will seek to determine/s;\r/l". A wiggly line over the
acronym for a metric will denote that we have ab initio multiplied that metric by 4, in
order to facilitate comparisons with results presented in terms of the SD, rather than the
Bures metric, which is one-fourth of the SD metric. (This, perhaps fortuitously, gives us a
quite appealingcaleof numerical results.) The probabilities themselves—being computed
asratios—are, of course, invariant under such a scaling, so the “wiggle” is irrelevant for
them.

2. Preliminary analysis of the Kubo—Mori metric

The Morozova—Chentsov function for the Kubo—Mori metri¢lid, Eq. (2.18)]

log p, — log Pu
Pv— Pu

ckm (0p> pv) = (11)

To proceed in the study of the KM metric, we first wrote a MATHEMATICA program,
using the numerical integration command, that succeeded to a high degree of accuracy in
reproducing the formulgl4, Eq. (4.11)]

_ 2VNI(NZ)2)
- aN2r@)...T(N +1)

Cy (12)

for the Hall/Bures normalization constarj&,15] for variousN. (These constants form
one of the two factors—along with the volume of the flag manifdld, Egs. (3.22) and
(3.23)]—in determining the total Bures volume.) Then, in the MATHEMATICA program,
we replaced the Morozova—Chentsov function (9) for the Bures metric in the product formula
(10) by the one (11) for the Kubo—Mori function. For the ca¥es 3 and 4, we found that

the new numerical results were to several decimal places of accuracy (and in thecaze
exactly) equal to 3(N-1/2 times the comparable result for the Bures metric, given by (12).
This immediately implies that the KM volumes of mixed states are al$82/2 times

the corresponding Bures volumes (and the same foKi¥leand SD volumes), since the
remaining factors involved, that is, the volumes of the flag manifolds are common to both
the Bures and KM cases (as well as to all the monotone metrics). Thus, we arrive at our
first conjecture(cf. [14]),

s _ saystn — T 120489 13
Vi =04sp" = 515 ’ (13)
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Table 1

Estimates based on (four times) the Bures, “average” and Kubo—Mori metrics, using a scrambled Faure—Tezuka
sequence composed of 2 billion points distributed over the 15-dimensional unit hypercube, for quasi-Monte Carlo
numerical integration

¢ s+n — S s+n
Metric Vmétric Vr;étric Pretic = V*/V
Bures 188264(188264) 0.137884 (0.137817) 0.0732398 (0.0732042)
Average 280801(280803) 1.33504 (1.33436) 0.0475438 (0.0475194)
Kubo—Mori 120504(120531) 4.1412 (4.14123) 0.0343654 (0.0343583)

The results based on the first 1 billion points are given in parentheses.

for which we will obtain some further support in omrainnumerical analysisection 3,
yielding Table 1

3. Main analysis

Associated with the minimal (Bures) monotone metric is the operator monotone func-
tion, feuredt) = (1 + t)/2, and with themaximalmonotone metric, the operator monotone
function, fmax(t) = 2t/(1 + 1) [14, Eq. (2.17)] Theaverageof these two functions, that is,
faveragét) = (14 61 + 2)/(4 + 41), is also necessarily operator monotdaé, Eq. (20)]
and thus yields a monotone metric (apparently previously uninvestigated). Again employ-
ing our basic ansatz, we used the associated Morozova—Chentsov function—given by the
general formuld20, p. 2667] c(x, y) = 1/yf(x/y):

4(pu + pv)

—_— (14)
0% + 6o, py + 03

Caveragépu > ,Ov) =

For our main quasi-Monte Carlo analysis, we (simultaneously) numerically integrated
the SD,KM and aVg volume elements over a 15-dimensiomgbercubeusing two billion
points for evaluation, with the points forming a scrambkedire—Tezukaequencg33].
(Asin[4], the 15 original variables—12 Euler angles and 3 angles for the eigenyalyes
Eqg. (38)}—parameterizing the 4 4 density matrices were first linearly transformed so as
to all lie in the range [0, 1].) This “low-discrepancy” sequence is designed to give a close-
to-uniformcoverage of points over the hypercube, and accordingly yield relatively accurate
numerical integration results.

The results ofTable 1suggest that rejecting the previous conjecture (5)—based on a
much smaller number (65 million) of data points than the 2 billion here—and replacing it
by (perhaps the more “elegant”)

Vip = 20ag = 3(+/2— 1)~ 0.138071 (15)

whereoag denotes the “silver mear{38]. (As we proceed from 1 billion to 2 billion
points, some apparent convergence—0.137817 to 0.137884—of the numerical estimate to
the conjecture (15) is observed. It is interesting to note the occurrence &fshiree
positive integers in (15)—a property which obviously the much-studjelden mean
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(v/5 — 1)/2 lacks.) By implication then, the conjecture (6) is replaced by

Vi | 1680ag
stn 8
Vap' T

P3p/Bures= ~ 0.0733389 (16)

In addition to simplify our numerical results, we were also encouraged to advance this
conjecture (15) on the basis of certain earlier result§8lna number of quite surprisingly
simpleexactresults were obtained usisgmbolicintegration, for certain specialized [low-
dimensional] two-qubit scenarios. This had led us to first investigdtg the possibility of
an exact probability of separability also in thel 15-dimensional setting. (Unfortunately,
as far as we can perceive, the full 15-dimensional problem is not at all amenable—due to
its complexity—to the use of the currently available symbolic integration programs and, it
would appear, possibly for the foreseeable future.)

In particular in[8], a Buresprobability of separability equal toag had been obtained for
boththey = 1 andg = 1/2 state$39] inferred using the principle of maximum nonadditive
[Tsallis] entropy—and also for an additiorlaiv-dimensional scenari@, Section 11.B.1]

(We have recently reanalyzed this last scenario, but withmdemalmonotone metric, and
also found a probability of separability equabigy. The valuerag also arises as the amount

by which Bell's inequality is violated40, Eq. (8)]) Christos and Gherghetfa8] took the
silver mean, as in our study here, to be the positive solution of the equatich= 1/x—

since having a “mean” value less than 1 was useful in their investigation of trajectory
scaling functions—while others (perhaps mde),42] [43, Chapter 22pave defined it as

the positive solution af — 2 = 1/x, thatis,~/2 + 1, thereciprocalof Ouroag. (The square

root of two minus one is also apparently a form of “Pisot numipé4]. Similar definitional,

but perhaps not highly significant, ambiguities occur in the (more widespread) usage of the
term “golden mean”, that isy5 + 1)/2[45]. (“The characteristic sequence af% — 1)/2
(respectively/2 — 1) is called thegolden mean sequen¢espectivelyPell sequencg

[46]. This line of analysis—concerned with the alignment of two words over an alphabet—
originated, apparently, from a 1963 unpublished talk of the prominent [Nobelist] physicist,
D.R. Hofstadtef46].) In [47], demonstrating a conjecture of Gromov, thimal volume

of R? (the infinite Euclidean plane) was shown to be/@ag. (AN exposition of this result

is given in[48].) In [49] the value of ¥20ag Was obtained for a certain supremum of
volumes

Further conjectures thaVy,, = 2%nag/9 ~ 1.33469 and Vi, = 10oag ~ 4.14214
seemworth investigating, based on the resulfabsle 1 (Our estimate of the rati‘zi&~M /Vip
from Table 1is 30.0339.) So, we have an implied conjecture that

Ve 15750
_ _KM _ 9 o
= R 0.0343776 (17)

It would then follow thatPyy, / P3p g res = 15/32 = 0.46875.

The convergence to tHenownvalue ofvgfg" in Table 1seems more pronounced than
any presumptive convergence to the conjectured values of the separable volumes alone,
but the latter are based on considerably smaller samples (roughly, one-quarter the number)
of points than the former (for which, of coursa| the 2 billion systematically generated
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Fig. 1. Deviations of the estimated values Ug” from the known value—as shown by Sommers and
Zyczkowski—of 78 /5040~ 1.882645, as the number of points in the scrambled Faure-Tezuka sequence in-
creases from 1 million to 2000 million.

points are used). Clearly, our conjecture (15) can be reexpres3&y as Vglg” - Vip =
78/5040— oag/3 ~ 1.74457. Our sample estimate feg, is, then, 1.74475.

In Figs. 1-5 we show thedeviationsfrom our conjectured and known values of the
estimates provided by the Faure—Tezuka sequence as the number of points in the sequence
increases from 1 million to 2000 million (i.e., 2 billion).

:! ‘
g‘go' 1000 1500 2000°' S
-0.02 '

Fig. 2. Deviations of the estimated values \qj’{ﬂ" from the conjecturedvalue of 4:8/315~ 120489, as the
number of points in the scrambled Faure-Tezuka sequence increases from 1 million to 2000 million.

dev.

.500 1000 1500 2000P!S

Fig. 3. Deviations of the estimated valuesif, from theconjecturedralue ofoag/3 = 0.138729, as the number
of points in the scrambled Faure—Tezuka sequence increases from 1 million to 2000 million.
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1500 2000Pt S

Fig. 4. Deviations of the estimated values \qg,g from the conjecturedvalue of 2%,4/9 ~ 1.33469, as the
number of points in the scrambled Faure—-Tezuka sequence increases from 1 million to 2000 million.

dev.
0.01} i
0.005f

O LW ots.
: 5.@. 1000 ¥150 <J00
A W

-o.oos:{ 3
-0.01}: ¢ W

- 0. 015}

ca.

Fig. 5. Deviations of the estimated valuesw;{;\/I from theconjecturedialue of 1&ag ~ 4.14214, as the number
of points in the scrambled Faure—-Tezuka sequence increases from 1 million to 2000 million.

In Fig. 6, additionally, we showtogetherthe relative deviations ofV{" and of V3"
from the known and conjectured values. In other wordsdivelethe estimated values by
the known/conjectured values and subtract 1. The SD curve is extraordinarily better behaved
(“hugging” thex-axis) than is the KM curve. Perhaps this difference is attributable to the
“simpler” (more numerically stable?) nature of the Morozova—Chentsov function in the SD
case (9) than in the KM case (11).

Further plotting of our various results yielded one of particular interestidn 7 we
show the estimates df;, — Vp. Of course, this figure (the scale of which was internally

l. pts.

Fig. 6. Joint plot ofrelative deviations of estimates df$5" and Véﬂ” from their known and conjectured values
of 78/5040 and 48/315. The more rugged curve correspond&’m”.
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est.

25.003|:
25. 002
25.001% |

. S

1000 1500 2000" Pts:
24. 999"}

24.998['%¥";
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Fig. 7. Estimates of the differencey,; — Vgp, as the number of points in the scrambled Faure-Tezuka sequence
increases from 1 million to 2000 million. Note the strong suggestion that the true value is 25 (or close thereto).

dev.
0. 002/~
0. 0015}
0.001-
0.0005|

et

500 1000 1500 2000° PtS:

Fig. 8. Deviations of the estimated values‘@%" from the conjectured value of 28/8448, as the number of
points in the scrambled Faure—-Tezuka sequence increases from 1 million to 2000 million.

chosen by MATHEMATICA, based on the data, and not exogeneously imposed) strongly
suggests tha'y, . — Vg = 25. Now, we found that if we posit

aVg
V””——25ﬁ’”280792 (18)
g T 8448 T
(with 8448= 28.. 3. 11), it would follow that
24498 26
no_ Y = g A 24 4 1
29~ V80 = 587040~ o °AY 99996094 (19)

(with 887040= 28.32.5. 7. 11), beingstrikingly close to the indicated value of 25.
In Fig. 8 we plot the deviations of the estimates‘q%” from its conjectured value (18).

4. Auxiliary analysis

In anindependenset of computationsTable 2, employing 415 million points of a
scrambledHalton sequence (as opposed to the scrambled Faure—Tezuka sequence used in
Section 3, we sought to obtain estimates of the probability of separability of two arbitrarily
coupled qubits based on three monotone metrics of interest. The specific method employed
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Table 2
Estimates based on (four times) the Grosse—Krattenthaler—Slater, Wigner—Yanase and Kubo—Mori monotone
metrics, using a scrambled Halton sequence consisting of 415 million points

¢ s+n s S — S
Metric vmétric Vmétric Pretric = Vi
GKS 54237 0.330827 0.0609965
wy 14.5129 0.730567 0.0503391
KM 120.504 4.1791 0.0346801

was that of scrambled Halton sequenfEd. (While there are different scrambled Faure—
Tezuka sequences depending upon the particular random generating matrices used, the
scrambled Halton sequence is unique in nature.)
These correspond to the operator monotone functions,
#/(=1) ¢

fas) =" fn) =34 0= @)

The subscript GKS denotes the Grosse—Krattenthaler—Slater (“quasi-Bures”) metric (which
yields the common asymptotic minimax and maximin redundanciagiieersalquantum
coding[50, Section IV.B, 51, the subscript WY, the Wigner-Yanase information met-

ric [52, Section 4] [53,54]and the subscript KM, the Kubo—Mori metric already studied

in Sections 2 and .3(We had, in fact, intended to study the “Noninformative” mono-
tone metric[55] here instead of the KM metric, but there was a programming oversight
that was only uncovered at the end of the computations). It appears conjecturable that, in
terms of the separable stat@’éks = 4opg/5 ~ 0.331371. (The evidence is somewhat of a
weaker nature that'\iv~Y = Topg/4 =~ 0.724874.) Also, in terms of the combined separable

and nonseparable states, it seems possibld/g@ = 78/1750~ 5.42202, with 1750=

2.5%.7.1f so, we would havePg g = 1400aq/7® ~ 0.0611158.
We had hoped to further extend the scrambled Halton sequence used here, but doing so
has so far proved problematical, in terms of available computer resources.

5. Maximal monotone metric

As to themaximalmonotone metric, numerical, together with some analytical evidence,
strongly indicate tha¥:,t is infinite (unbounded) (as well 84,,,). The supportingnalyt-
ical evidence consists in the fact that for the three-dimensional convex set @fdensity
matrices, parameterized by spherical coordinates §] in the “Bloch ball”, the volume
element of the maximal monotone metriofsing(1 — r2)~%/2, the integral of whiclui-
vergesover the ball. Contrastingly, the volume element of the minimal monotone metric
is r2sinf(1 — r?)~1/2, the integral over the ball of which Einite, namelyz2. Fors > 1
the integral of-? sind(1 — r2)~* diverges, so the divergence associated with the monotone
metric itself is not simply marginal or “borderline” in character.

To gain further evidence in these regards, one can engage in numerical estimation for the
one-parameter family ahterpolatingmetrics given by the operator monotone functions

fa(t) = (1 — a) fmax(t) + afBured?), (21)
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Table 3
Estimates based on the first 96 million points of a scrambled Faure—Tezuka sequence of (four times) a number of
metrics obtained by interpolating between the maxima(0) and minimal § = 1) monotone metrics

a 1 10! 102 103 10 10°° 0

vitn 188258 795127  8254x 10°  6.0345x 10°  3.049x 102  12825x 1015  8.0858x 10°

Ve 0.13786 148.569 63659 ®72x 107 6502x 10°  22084x 102 5229x 10%

P 0.073229  0.01868  0.006827 0.003475 0.0021325 0.0017219 0.00064669

for which the Morozova—Chentsov functions are of the form

Z(P/L + pv)
a(,OM - :Ov)z +4pupv

calop, pv) = (22)

Then, one could plot the results as a function of the pararaeted study the limit: — 0.
(Of course, fora = 1/2, one would recover the “average” monotone metric, studied in
Section 3)

A preliminary investigation along these lines is reportediable 3 Based on the first 96
million points of a scrambled Faure—Tezuka sequence, we obtain estim&g'o¥’s and
PS = V5 /vt for (four times) the metrics interpolating between the maxima#(0) and
minimal (@ = 1) monotone metrics for several valuesspincreasingly close ta = 0. So,
P} ax would seem quite close to being 0. (However, some clearly numerically anomalous
behavior occurred in passing from 96 million points to 97 million points. The estimates of
vstn v o and PS . jumped to 827999x 10°0, 7.48026x 10*° and 0.903414, respec-
tively.)

It would be interesting téormally test the hypothesis tha&,,, = 0. (More specifically,
we might ask the question if tHenit of P; asa — 0is 0.) If it can, in fact, be established
that Py, is zero, this might serve as something in the nature of a “counterexample” to
the proposition (a matter of considerable interest in the theoretical analysis of quantum
computation) that for bipartite quantum systems of finite dimension, tkexeseparable
neighborhood of the fully mixed state of finite volurfE6—59] (These conclusions were
obtained with the use of either the trace or Hilbert—-Schmidt metric—the first of which is
monotone, but not Riemannian, while the second is Riemannian, but not moifibigne

We have conducted a test along these lines. Using a sivipige Carlo(rather than
guasi-Monte Carlo) scheme, we generated 10 sets of 10 million pamiemlydistributed
over the 15-dimensional hypercube. For each of the 10 sets, we obtained estinfg of
Vimaxand hencey, ... Based on the 100 million points the (mean) estimat®ipf, wasy =
1.77038x 107 and the standard deviation across the 10 samples3.692x 10~". So,
the value 0O liesessthan one-half (i.e., 0.479510) standard deviations frorRor a student,
t-distribution with 9= 10— 1 degrees of freedom, 40% of the probability lies outside
0.261 standard deviations from the mean and 25% outside 0.703 standard deviations. So
there is little evidence here for rejecting a hypothesis Hjat equals 0. For an independent
analysis based on 10 sets of 4 million points, the estimates were roughly comparable, i.e.,
w=24196x 10/, n = 5.09683x 10~’. Also, for 10 sets of 5 million points, but setting
the interpolation parametamot to 0 but to 0.05, there were obtained= 0.00438593 and
n = 0.000229437, withu/n = 19.1611. So, here onean decisively reject a hypothesis
that the probability of separability far= 0.05 is 0.
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Table 4

Monte Carlo analysis based on 13!° = 215 233 605 density matrices

Metric Est. S.D. cj.-Est./S.D.
rAnétric

Bures 013800 000021 03354

GKS 032990 000057 25696

WYy 0.72811 000152 -

Avg 1.3363 000287 —0.5821

KM 4.1574 002242 —0.6792

NI 848.05 28997 -
;Etlric

Bures 188295 000102 —0.2985

GKS 54232 000315 —0.3867

WYy 14.5084 000943 -

Avg 280781 001769 00618

KM 120.256 Q017489 13363

NI 486682 421712 -

Estimates (est.) of the volumes, standard deviations (S.D.) of these estimates and the number of standard deviations
they are away from their conjectured (cj.) or known values, as giva@alite 6 are presented.

6. Further Monte Carlo analyses

We also undertook a series bfonte Carloanalyses, incorporating together the GKS,
Bures, average, Kubo—Mori, Wignher—Yanase, maximal and NoninformativggB]ilnono-
tone metrics. (The operator monotone functig(r) associated with the NI metric is
2(t — 1)2/(1 + 1) log? (r).) We subdivide the unit hypercube intd°3= 14, 348 907 sub-
hypercubes, pick mndompoint in each one of these, and then repeat the proced e
are now able to report ifiable 4the results of 15 iterations of this process. Thatral limit
theorentells us that for a large enough sample size, the distribution of the sample mean will
approach a normal/Gaussian distribution. This is true for a sample of independent random
variables from any population distribution, so long as the population liag@astandard
deviation. The population standard deviation is equal to the standard deviation of the mean
times the square root of the sample digevhich in our case is 153%°. If one were to use
two standard deviations as a rejection criterion, then the only one of our conjectures that
would be rejected would be that f ks (However, the standard deviations in the separa-
ble cases would be approximately four times as large if we only used the number of points
corresponding to separable states, rather that spates, as we have done here. This would
lead, then, tmoneof our conjectures being rejected.) The estimat®Rf,, obtained in the
same Monte Carlo procedure, wa83981x 10%2/1.93678. 10°% = 2.24073x 10 1°,

7. 14-Dimensional boundaries
7.1. Initial analyses

In the analyses above, we have been concerned with the volume of the 15-dimensional
convex set of 4x 4 density matrices, as measured in terms of a number of monotone metrics.
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We have modified the computer programs involved, so that they would provide estimates
of the volume (“hyperarea”) of the boundary of this set.

Our numerical integrations were conducted over a 14-dimensional hypercube, now al-
lowing one of the original 15 variables (specifically, the hyperspherical angle desiggated
in[4, Eq. (2)) to be determined not by the quasi-Monte Carlo procedure, but by the require-
ment that the determinant of the partial transpose equal zero. This considerably increases
the computational effogter point generated.

Our early estimates, in this regard, were: 0.587532 (SD), 6.254G§) @nd 19.8296
(KM), all three based on the first 2,600,000 points of a scrambled Faure—Tezuka sequence;
1.47928 GKS), 3.37384\(VY) and 19.9277KM), all three based on the first 1,500,000
points of a scrambled Halton sequence; and 0.5888161), 837.0724 = 10°1), 414676
(a =1072),1.57088x 10% (a = 1073), 4.87246x 10'° (¢ = 10~%), 1.30774x 10'3 (a =
1079), 8.57852x 10?’ (a = 0) (all seven based on the first 1,100,000 points of a scrambled
Faure sequence).

Let us note that in terms of the Bures metric—identically one-fourth of the statistical dis-
tinguishability (SD) metric—the pure state [rank 1] boundary of the4idensity matrices,
bothseparable and nonseparable, is known to have voitiy@~ 5.16771. (This is equal
to the volume of a 6-dimensional ball of radius 1 and to the volume of a 3-dimensional com-
plex projective spacfl4, Section IV.C]) The 14-dimensiondb0] submanifold of 4x 4
density matrices of rank 3 has Bures volunfg4324320~ 6.98444x 10~*. Multiplying
by 214, we obtain the SD counterpart to this of

S+n — 5127T7
SD ™ 135135

This istwice (a “double-covering”) ther{ — 1)-content (surface area or hyperarea) of the
unit sphere im = 15 dimensions.

~ 11.4433 (23)

7.2. Further analysis

Subsequently, we joined all the monotone metrics of interest into a single joint analysis,
using an independent Faure—Tezuka sequence of points in the 14-dimensional hypercube.
Up to this point in time, we have generated 35 million poifitalje 5. For each of these
points, we sought values of the 15 coordinate—for which the partial transpose of the
corresponding 4 4 density matrix had zero determinant. For 24,038,658 of the points at
least one feasible value 6§ was found. The even-numbered solutions strongly dominated
the odd-numbered solutions. (This may pertain to the fact that in this series of analyses,
we had used—adjusting accordingly—the rangetdQrather than [07/2], as in our other
analyses, foby, 62 andfs.) There were 74 points with one solution, 30 with three, and 11
with five, while there were 2,553,168 with two, 21,312,933 with four, 172,429 with six
and 3 with eight.

In Fig. 9, we show the cumulative approximations (in steps of 100,000 points) to the
known value (23) oBgH'.

We conjectureKig. 10 that the component cBSSJB” consisting of separable staféd],
that is Bgp, has the value 4gg/39 ~ 0.456697.
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Table 5

Estimates of 14-dimensional boundary volumes based on (four times) the Bures, Grosse—Krattenthaler—Slater,
Wigner—Yanase, average, Kubo—Mori and noninformative metrics, using a scrambled Faure—Tezuka sequence
composed of 35 million points

Metric B Bst B

Bures 0.456593 11.4443 0.584072
GKS - - 1.45204
wy 3203.81 17576.3 6606.58
Avg 6.60067 246.716 6.20592
KM — — 19.6215

NI - - 4333.36

The concomitant estimate of the SD/Bures probability of separability of such rank-three
states would then be

M oues By,  29729%pg
ures — -
BLy 102417

~ 0.0398167 (24)

This is considerably less than the general probability of separability [of, generically, rank-
fourstates], conjectured in formula (16) to be 0.0733389. The ratio of these two probabilities
is 1415%/81920~ 0.542194.

dev.
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50 100150200250300350# pts.

4

-0. 0005} .
-0. 001} ;-

<

Fig. 9. Deviations of the estimated value B§5' from the knownvalue of 5127 /135135~ 114433, as the
number of points in a certain scrambled Faure—Tezuka sequence increases from 100,000 to 35 million

dev.
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0.002f .
0.001)" - sy
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-0. 002} -+
-0.003; -
- 0. 004t -

Fig. 10. Deviations of the cumulative estimatesBgf, from the conjectured value of 435/39 ~ 0.456697. The
number of points are recorded in steps of 100,000.
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dev.

0. 0005
-0. 0005} &+~

-0.001} . wy
-0. 0015/ Y
-0.002] -
-0. 0025

Fig. 11. Deviations from the conjectured valuefgb = 550a4/39 ~ 0.584147 of the cumulative estimates of
the SD volume of that part of the 14-dimensional boundary of the separable states consisting of nondegenerate
states. The number of points are recorded in steps of 100,000.

In Fig. 11, we show the cumulative approximations to a conjectured valygsef=
550g/39 2 0.584147 for the 14-dimensional SD boundary of separable two-qubit states
composed of generically rarfur states. (The test for membership in this class is that
the determinant of the partial transpose of the correspondirgldensity matrix be
zero.) Thus, we have an implied conjecture that the 14-dimensional boundary of separa-
ble 4x 4 density matrices ha®tal SD-volume of 8sp + BSy = 980ag/39~ 1.04084.

The fit of our cumulative estimates to this conjecture is showrkrign 12 Numeri-

cal evidence Kig. 13 also possibly suggests thﬂ;vgz 2550g/16 ~ 6.60153; that

(Fig. 14 By, = 7735ag ~ 320394; that Fig. 19 B)L" = 2° - 3Bg' ~ 175769; that

(Fig. 16 Byjy = 6160ag/13~ 19.6274; and thatiig. 17), Bgis = 27Qag/77 ~ 1.45244
(although, it is intriguing also to consider that 778 = 2- 39). So, surprisingly, the
probability of separability of a rank-three state appears to be much higher, that is,
348 423 07%0pg/262144" = 32 -52.72.11. 13 - 170a¢/2'877 ~ 0.182281 using the
Wigner—Yanase metric (but not the average metric, for which we have a sample estimate
of 0.0267541 and a conjecture of 10729&R§/54992r" ~ 0.0267572) than with the Bu-

res or SD metric, in strong contrast to the rank-four case examined e&#tetigns 3

and 9.

dev.
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Fig. 12. Deviations from the conjectured valueRif, + Bsp = 980ag/39 ~ 1.04084 of the SD-volume of the
total boundary of separable states—composed of nondegenerate (rank-four) and degenerate (rank-three) 4
density matrices. The number of points of the Faure—Tezuka sequence are recorded in steps of 100,000.
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Fig. 13. Deviations from the conjectured value of 2a§/16 ~ 6.60153 of the cumulative estimates Bf;,
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Fig. 14. Deviations from the conjectured value of 7dgH~ 320394 of the cumulative estimates 8f, .

7.3. Levy—Gromov isoperimetric inequality

The scalar curvature of the Bures metric for the 4 density matrices is bounded
below by 570[27, Corollary 3] However, application of the Levy—Gromov isoperimetric
inequality [62, Appendix C]requires a lower bound dfl on Ricci(Y, Y), whereRicci is
the Ricci tensor and runs over all unit tangent vectors, for closed { 1)-dimensional
manifolds, we did not immediately know if this condition is satisfied or not (given that one
cannot apparently “control” the Ricci curvature in terms of the [bounded] scalar curvature),

dev.
7.5| -
o ©
2.5¢ . %
5@ '100 150 z&e*" §G;’§,,QQT“§‘3 o# Pts.
2.5
5

Fig. 15. Deviations from the conjectured valueRjf., of 262144 /45045= 2° - 3B’ ~ 175769,
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Fig. 16. Deviations from the conjectured valuefpf, = 616vag/13 ~ 19.6274.

but we have found that the inequality is violated, and that the conditiontisatisfied in
the case before us.

To reach this conclusion, we first took the parametestrictly following the nota-
tion in [62]) to be Psp/Bures= V3p/ Vs Y+” ~ 0.0736881, according to our conjecture (6)
above. Then, the functiof{e) is the 14 d|menS|onaI volume of the boundary splig,
where the volume of the balB, itself is equal toa vol(S'®), and $1° is the standard
15-dimensional sphere. Further, the functibrs(«) is the ratio ofs(a) ~ 0.499459 to
vol(S1%) = 25677 /2027025~ 0.381443. The Levy—Gromov inequality then asserts that
Is15(e), which here equals 1.30939, must be less than a certain ratio, which in our case
would— according to our conjectures and known values—be

Bures+ ,BBures 2_14(BéD + IBSD)
Vs+n 2715(‘/%—5”)

Bures

~ 1.10573 (25)

So, the indicated inequality is violated.
At this point, we applied formula (7a) §27], giving the Ricci tensor based on the Bures
metric fordiagonaldensity matrices,

YoupyZyw 3 YypZow
wov,n - ‘Eu,v—Z’
(o + o) + Py)(ov + o) 2 (o + pv)

Ricci(Y, Z) = 3% (26)
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Fig. 17. Deviations from the conjectured valuefglig = 2700ag/77 ~ 1.45244.
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whereY andZ are tangent vectors (traceless Hermitian matrices). We, in fact found, using
numerical simulations, violations of the lower boundNdfor (N — 1)-dimensional man-

ifolds on the Ricci tensor required by the Levy—Gromov inequality, wWite= 14 in our

case. The lowest value we were able to achieve in a series of simulations was 3.45666, so
nonegativevalues were recorded. (The upper value appeared to be unbounded. We also ap-
plied the formula (26) to the 8-dimensional convex set ef 3 density matrices and found,
through Monte Carlo simulations, a value of the Ricci curvature as low as 3.00332, so it
appears conjecturable that 3 is the actual lower bound.) Thus, our evidence here indicates
that the inequality is not satisfied, apparently since all the conditions for its application
have not been met. (Using the ansatz elaborated upon earection 1.3we also found
numerically for the average and WY monotone metrics that the lower bouNd-0fL4 on

the Ricci tensor was violated.)

7.3.1. Areal/volume ratios

Let us also note here (dfL6, Section 6}, in terms of the known valug$4] and our con-
jectures, that for the separalpiieisnonseparable states, the ratio of the SD 14-dimensional
hyperarea to the SD 15-dimensional volume, is

Bx+n 8192
sD
= —— ~6.07831 27

Ve 429 @7)

while for only the separable states, it is

B 08
BsotPso _ 98 7 53846 (28)
Vép 13

8. Concluding remarks

Needless to say, to the extent any of the conjectures above are, in fact, valid ones, their
remains the apparently formidable task of finding formal/rigorous proofs.

A direct/naive “brute force” strategy afymbolicallyintegrating the volume elements
of the various monotone metrics over the 15-dimensional convex sets of separable and
all two-qubit states —while successful for lower-dimensional scen{8ies- appears to
be quite impractical computationally speaking. It seems that one would have to deal with
multiple ranges of integration given by fourth-degree polynomials. One might speculate
that the integration of the (product) measures for the volume elements of monotone metrics
over the 12 parameterizing Euler angles would yield a result simply proportionalto
common to all monotone metrics, and that additional distinguishing factors would appear
fromintegrating over the final three variablés, (62, 63 in the notation of4]) parameterizing
the eigenvalues of the 4 4 density matrices. _

Perhaps, in this regard, the work of Sommers Apdzkowski[14]—which they view
“as a contribution to the theory of random matrices”—in constructing a general formula for
v for N-level systems, is extendible to (monotone) metdtiserthan the Bures. The
volumeVg" isknown, and we have indicated our conjectures#jat = 64V, Vag' =

257%/8448, VL = 78/1750 andVyLy = oo, but we have no similar conjecture, at the
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present, fo/*1". (The Wigner—Yanase metric corresponds to a spacertdtant curvature
[52].) But there appears to be no “hint” in the literature as to how one nfiaghtally derive
simply theseparable—as opposed to separalplieisnonseparable—volumes for any of the
monotone metrics.

In this study, we have conjectured that the volumes of separable two-qubit states is, as
measured in terms of several monotone metrics of interest, simple multiples of the silver
mean 6ag). It is interesting to point out, it seems, that in certain (“phyllotactic”) models
of the arrangements of (rose) petals, the positions of the petals (in fractions of a full turn)
are given by the fractional parts of simple multiples of foddenratio [63, p. 113][64, pp.
122-123](cf. [65, p. 137). (Of course, it remains possible that we have been somewhat
“overeager” here to find multiple roles fepg. In this regard, a sceptically inclined reader
might point out that 200, ~ 660555 is quite close to our sample estimate of 6606.58
(Table 9 for By and 2y &~ 6.60555 approximates our sample estimate of 6.60067 for
Blyq Here,opr = (3+ +/13)/2 is the “bronze meai2].)

In this and other papef4—-8,16] attention has been focused on the matter of determining
the volumes of quantum states in terms of various monotone metrics. An even more con-
siderable body of work concerned with differential geometric properties of the monotone
metrics is devoted to issues of thealar curvatureof monotone metric§52,66,67] For
instance, it has been found that the scalar curvature aVtkeN density matriceDy is,
in terms of the Wigner—Yanase metric,/@(N? — 1)(N? — 2) [52], while for the Bures
metric, it is 24 forN = 2 and for generaN, no less than (12)(5N? — 4)(N? — 1), which
value is assumed for the fully mixed stat¢ &) I [67]. (For theinfinite-dimensional case of
thermal squeezed states, Twam|ég, Eq. (30)]has found the scalar curvature to be given
by —(8(cosif B/4+ 12 sinif B/4))/(costt B/2), where the “non-unitary” parameter
corresponds to the inverse temperature.) It would certainly be of interest to find linkages
between these two interesting areas of investigation. We note thac#tar curvature
determines thasymptotidehavior of thevolumeof a Riemannian manifolh2] [69, p. 55,
Corollary 5.5 and Example 3Andai [70, Eq. (1)]has recently presented a formula for
the relation between the volume of a geodesic ball centered at the fully mixed state and the
scalar curvature there (see algd, Eq. (29)).

Our earlier conjecture (3)—in its unadjusted form—as to the exact valugghad
suggested a similar-type conjecture for quiiitrit pairs[12]. Now that we have found
compelling numerical evidence to reject (3) (and replace it by (15), we obviously must
be dubious as to the presumed validity of its qubit—qutrit analogue, but presently lack
any notion as to how to replace it. Additionally, our numerical experience so far indicates
that it would be extraordinarily difficult to “pinpoint” (accurately estimate) the value
of the volume of separable qubit—qutrit pairs, since one would then be proceeding in a
(more computationally demanding) much higher dimensional (35 dimensional versus 15
dimensional) space, plus the size of the separable domain one would be estimating would
be much smaller relatively speaking (i.e., relatively fewer sampledalensity matrices
would be separable vig-vis the 4x 4 case).

We summarize infable 6our present state of presumed knowledge in regard to the
various monotone metrics studied here. Of course, one would aspire to fithtienals

7 . H s s+n S Ss—+n
that map an operator monotone functififietric(t) INt0 V5 ctic Vimetric Bimetric Bmetric @Nd
ﬂmetric-



Table 6

Conjectured values (except fof t" and B , which areknown) of VS - vt gt ' BS - and B gy for (four times) various monotone metrics, listed in
ures Bures metric’  metric’ * metric’  metric metric

order of increasing volume size, together with the corresponding operator monotone functions and Morozova—Chentsov functions

Metric f@ c(pp, pv) Vs ystn B Bt B B+ 8
Bures 141t 2 oAg 78 430pg 51277 550pg 98opg
2 ou+ ov 3 5040 39 135135 39 39
GKS £/(t=1) e(pu/ pu)p,l/(pv—p,l) 4opg 78 ’ - 2700ag -
e o 5 1750 77
(Vi + 1y 4 Toag 2621447
WY ~ =7 R e ? 7739, == 15950, 23685,
4 (/P + /o) 4 A0 45045 A0 A9
A 146t +12 Ao, + pv) 2%ag 2578 2555pg 34377 15 495754
9 4+ 4 P2 + 60,00 + P2 9 8448 16 42075 Ag 16
— 8
KM Q M 10(7Ag 4l ? ” 61&-Ag 5
logr Pu — Pv 315 13
NI 2 — 17 (P + 1) 10G(P1e/ 1) ’ ’ ’ ’ ’ ’
(1+1)(log 1)? 2(ou — pv)?
2
Maximal s Put Py %) o) ) o) %) o)
1+t 2pupy

For the various denominators, we have the interesting prime decompositions=584®? - 5. 7; 1750=2-5° . 7; 8448=28.3.11; 315=3%.5.7; 135135=
3%.5.7.11-13;42075=3%.5%.11- 17 and 45045= 32 . 5. 7- 11 13. As pertains to numerators: 5822°; 7735=5.7- 13- 17; 262144= 218; 15950= 2. 5% .
11.29;255=3.5.17;495=33.5.11;270=2-3%.5; and 616=23.7- 11.
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