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Abstract

Extensive numerical integration results lead us to conjecture that thesilver mean, that is,σAg =√
2 − 1 ≈ 0.414214 plays a fundamental role in certain geometries (those given by monotone metrics)

imposable on the 15-dimensional convex set of two-qubit systems. For example, we hypothesize that
the volume of separable two-qubit states, as measured in terms of (four times) the minimal monotone
or Bures metric isσAg/3, and 10σAg in terms of (four times) the Kubo–Mori monotone metric. Also,
we conjecture, in terms of (four times) the Bures metric, that part of the 14-dimensional boundary of
separable states consisting generically of rank-four 4 × 4 density matrices has volume (“hyperarea”)
55σAg/39, and that part composed of rank-threedensity matrices, 43σAg/39, so thetotal boundary
hyperarea would be 98σAg/39. While the Buresprobabilityof separability (≈0.07334) dominates that
(≈0.050339) based on the Wigner–Yanase metric (and all other monotone metrics) for rank-four states,
the Wigner–Yanase (≈0.18228) strongly dominates the Bures (≈0.03982) for the rank-three states.
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1. Introduction

1.1. Background

An arbitrary state of two quantum bits (qubits) is describable by a 4× 4 density matrix
(D4)—an Hermitian, nonnegative definite matrix having trace unity. The convex set of all
such density matrices is 15-dimensional in nature[1,2]. Endowing this set with the statistical
distinguishability (SD) metric[3] (identically four times the Bures [minimal monotone]
metric[3]), we addressed in[4] the question (first essentially raised in the pioneering study
[5], and investigated further in[6–8]) of what proportion of the 15-dimensional convex
set (now a Riemannian manifold) is separable (classically correlated) in nature[9]. This
pertains to the question of manifest interest “Is the world more classical or more quantum?”
[5].

The Peres–Horodecki partial transposition criterion[10,11]provides a convenient nec-
essaryand sufficient condition for testing for separability in the cases of qubit–qubit (as
well as qubit–qutrit) pairs[12]. That is, if one transposes in place the four 2× 2 blocks of
D4, then in the case that the four eigenvalues of the resultant matrix areall nonnegative—or
more simply, if its determinant is nonnegative[13, Theorem 5]—D4 itself is separable.

Sommers anḋZyczkowski[14, Eq. (4.12)]have recently established (confirming en pas-
sant certain conjectures of Slater[15]) that the Bures volume of the (N2 − 1)-dimensional
convex set of complex density matrices (DN ) of sizeN is equal to

21−N2
πN2/2

�(N2/2)
. (1)

For the only specific case of interest here,N = 4, this gives us for the total Bures volume,

Vs+n
Bures= π8

165150720
≈ 5.74538× 10−5, (2)

where superscriptsdenotes the set of separable and the superscriptn the (complementary)
set of nonseparable 4× 4 density matrices. (The comparable volume based on theHilbert–
Schmidtmetric—which induces theflat, Euclidean geometry into the set of mixed quantum
states—isVs+n

HS = π6/851350500≈ 1.12925× 10−6 [16, Eq. (4.5)].) The volumeVs+n
Buresis

exactlyequal to that of a 15-dimensionalhalfsphere with radius 1/2[14]. Now, additionally,

Vs+n
SD = 215Vs+n

Bures= π8

5040
≈ 1.882645. (3)

So,Vs+n
SD is itself exactly equal to one-half the volume (“surface area”) of a 15-dimensional

sphere of radius 1. (The full sphere of total surface areaπ8/2520= 2Vs+n
SD sits in 16-

dimensional Euclidean space and bounds the unit ball there.)
One of the objectives in this study is to accurately estimate the included volumeVs

SD.
Then, we could, in turn, obtain a good estimate of the SD/Bures probability of separability.

Ps
SD = Vs

SD

Vs+n
SD

= Ps
Bures= Vs

Bures

Vs+n
Bures

. (4)
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Also, we could gain evidence as to possibleexactvalues, which on the basis of previous
lower dimensional analyses[8], we have been led to believe is a distinct possibility.

We had already undertaken this task in[4] (seeking there to exploit the then just-
developed Euler angle parameterization of the 4× 4 density matrices[17]). The analysis
was, however, in retrospect, based on a relatively small number (65 million) of points, gen-
erated in the underlying quasi-Monte Carlo procedure (scrambled Halton sequences) (cf.
[18,19]). (Substantial computer assets were required, nonetheless. Numerical integration
in high-dimensional spaces is a particularly challenging computational task.) One of the
classical “low-discrepancy” sequences is thevan der Corputsequence in baseb, whereb is
any integer greater than one. The uniformity of the van der Corput numbers can be further
improved by permuting/scrambling the coefficients in the digit expansion ofN in baseb.
The scrambled Halton sequence inN-dimensions—which we employed in[4] and in our
auxiliary analyses below (Section 4)—is constructed using the so-scrambled van der Corput
numbers forb’s ranging over the firstN prime numbers[19, p. 53].

To facilitate comparisons with the results of Sommers andŻyczkowski[14], which were
reported subsequent to our analysis in[4], we need to both divide the estimates given in[4]
by 4! = 24 to take into account the strict ordering of the four eigenvalues ofD4 employed by
Sommers anḋZyczkowski[14, Eq. (3.23)], as well as to multiply them by 8, since we (due to
a confusion of scaling constants) only, in effect, used a factor of 212 in [4, Eqs. (5)–(7)]rather
than one of 215, as indicated above in (3) is required. These two independent adjustments
together amount to a multiplication by 8/24 = 1/3. This means that the estimate ofVs+n

SD
(the true value of which, as given above, is known to be≈1.882645) from the quasi-Monte
Carlo analysis in[4], should be taken to be 1.88284= 5.64851/3; the estimate ofVs

SD from
[4] should, similarly, be considered to be 0.138767= 0.416302/3; and ofPs

SD (for which
no adjustment is needed, being a ratio), 0.0737012.

We had been led in[4]—if only for numerical rather than any clear conceptual reasons—
to formulate a conjecture that (after adjustment by the indicated factor of 1/3) can be
expressed here as

Vs
SD = π6

6930
= 0.138729, (5)

as well as that

Ps
SD ≡ Ps

Bures= 8

11π2
≈ 0.0736881 (6)

(suggesting that the [quantum] “world”—even in the case of only two qubits—is consider-
ably “more quantum than classical”). We now must view (5) and (6), but approximations to
the revised conjectures (15) and (16) below, obtained on the basis of such larger quasi-Monte
Carlo calculations.

1.2. Monotone metrics and quasi-Monte Carlo procedures

The Bures metric plays the role of theminimalmonotone metric. The monotone metrics
comprise an infinite (nondenumerable) class[20–22], generalizing the (classicallyunique)
Fisher information metric[23]. The Bures metric has certainly been the most widely studied
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member of this class[3,14,24–27]. For the infinitesimal distance element between two states
D4 andD4 + δD4, we have

(dsBures)
2 = 1

2�j,k(λj + λk)−1|〈j|δD4|k〉|2, (7)

whereD4 is diagonal in the orthonormal basis{|j〉} with eigenvalues{λj}.
Two other prominent members are themaximalmonotone metric[28] and theKubo–

Mori (KM) [29–31] (also termed Bogoliubov–Kubo–Mori and Chentsov[32]) monotone
metric. The Kubo–Mori metric (or canonical correlation stemming from differentiation
of the relative entropy) is, up to a scale factor, theuniquemonotone Riemannian metric
with respect to which the exponential and mixture connections aredual [32], and as such,
certainly merits further attention.

In this study, we will utilize additional computer power recently available to us, to-
gether withanotheradvanced quasi-Monte Carlo procedure (scrambled Faure–Tezuka se-
quences[33]—the use of which was recommended to us by G.Ökten, who provided a
corresponding MATHEMATICA code). Faure and Tezuka were guided “by the construc-
tionC(i) = A(i)P (i−1) and by some possible extensions of the generator formal series in the
framework of Neiderreiter”. (A(i) is an arbitrary nonsingular lower triangular [NLT] matrix,
P is the Pascal matrix[34] andC(i) is a generator matrix of a sequenceX.) Their idea was
to multiply from the right by nonsingular upper triangular (NUT) random matrices and
get the new generator matricesC(i) = P (i−1)U(i) for (0, s)-sequences[33]. “Faure–Tezuka
scrambling scrambles the digits ofi before multiplying by the generator matrices. . . The
effect of the Faure–Tezuka scrambling can be thought of as reordering the original se-
quence, rather than permuting its digits like the Owen scrambling. . . Scrambled sequences
often have smaller discrepancies than their nonscrambled counterparts. Moreover, random
scramblings facilitate error estimation”[35, p. 107].

The Faure–Tezuka procedure appears to us to be exceptionally successful in generating a
highly uniform (low discrepancy[36]) distribution of points over the hypercube—as judged
by its yielding an estimate of 1.88264 forVs+n

SD ≈ 1.882645. However, at this stage, the
proceduredoeshave the arguable shortcoming that it does not readily lend itself to the use of
“error bars” for the estimates it produces, as quite naturally do (the generally considerably
less efficient) Monte Carlo methods (which, of course, distribute points on the basis of
pseudorandom, rather than deterministic, methods).

“It is easier to estimate the error of Monte Carlo methods because one can perform a
number of replications and compute the variance. Clever randomizations of quasi-Monte
Carlo methods combine higher accuracy with practical error estimates”[35, p. 95]. G.
Ökten is presently developing a MATHEMATICA version of the scrambled Faure–Tezuka
sequence in which there will be a random generating matrix for each dimension— rather
than one for all [15] dimensions—which will then be susceptible to statistical testing[35].

1.3. Morozova–Chentsov functions

To study such monotone metricsother than the SD/Bures one, we will utilize a
certain ansatz (cf.[7]). Contained in the formula[14, Eq. (3.18)] of Sommers and
Życzkowski for the “Bures volume of the set of mixed quantum states” is the subexpression
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(following their notation),

QN = �1...N
ν<µ

(ρν − ρµ)2

ρν + ρµ
, (8)

whereρµ, ρν (µ, ν = 1, . . . , N) denote the eigenvalues of anN × N density matrix (DN ).
The term (8) can equivalently be rewritten using the “Morozova–Chentsov” function for
the Bures metric[14, Eq. (2.18)],

cBures(ρµ, ρν) = 2

ρν + ρµ
, (9)

as

QN = 1
2�

1...N
ν<µ (ρν − ρµ)2cBures(ρµ, ρν). (10)

A Morozova–Chentsov function is a positive continuous functionc(λ,µ) that is symmetric
in its two variables and for whichc(λ, λ) = Cλ−1, for some constantC, andc(tλ, tµ) =
t−1c(λ,µ) [21, Theorem 1.1]. There exist one-to-one correspondences between Morozova–
Chentsov functions, monotone metrics and operator means.[21, Corollary 6]. “Operator
means are binary operations on positive operators which fulfill the main requirements of
monotonicity and the transformer inequality”[21].

The ansatz we employ is that the replacement ofcBures(ρµ, ρν) in the formulas for the
Bures volume element by the particular Morozova–Chentsov function corresponding to a
given monotone metric (g) will yield the volume element corresponding to that particularg.
We have been readily able to validate this for a number of instances in the case of thetwo-
level quantum systems [N = 2], using the general formula for the monotone metrics over
such systems of Petz and Sudár [20, Eq. (3.17)]. One can argue that the joint distribution of
the eigenvalues ofDN is the product ofQN—pertaining to the off-diagonal elements of the
density matrix—-and an additional factorHN—pertaining to the diagonal elements. Now,
HN is equal to the reciprocal of the square root of the determinant of the density matrix
for all [Fisher-adjusted] monotone metrics—so we need not be concerned with its variation
across metrics in this study—and simply unity in the case of the [flat] Hilbert–Schmidt
metric (cf.[37]).

1.4. Outline of the study

In addition to studying the SD/Bures metric, we ask analogous questions in relation
to a number of other monotone metrics of interest. We study two of these metrics, in
addition to the SD metric, in our “main analysis” (Section 3) and two more in our “auxiliary
analysis” (Section 4), which is based on the same scrambled Halton procedure employed
in [4]—but with more than five times the number of points generated there, but also many
fewer points than in the primary (main) analysis here. (In hindsight, we might have better
consolidated the several monotone metrics into asingleinvestigation, from the very outset,
but our initial/tentative/exploratory analyses grew, and we were highly reluctant to discard
several weeks worth of demanding and apparently revealing computations. Also, we had
been using two different sets of processors [Macs and Suns] for our computations and for
a number of reasons—too involved and idiosyncratic to make the subject of discussion
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here—it proved convenient to conducttwodistinct analyses.) Also, we include analyses in
Section 5pertaining to themaximalmonotone metric, and a number of metrics interpolated
between the minimal and maximal ones. (The “average” monotone metric—studied in
our main analysis (Section 3)—is obtained by such an interpolation.) InSection 6we
apply Monte Carlo methods in a limited study of the questions raised before. InSection 7,
we undertake studies concerned with the values of volumes (“surface areas”) of the 14-
dimensionalboundaryof the 15-dimensional convex set of two-qubit states, as measured
in terms of the various monotone metrics under investigation here.

To begin with (Section 2), we will seek to determineVs+n
˜KM

. A wiggly line over the
acronym for a metric will denote that we have ab initio multiplied that metric by 4, in
order to facilitate comparisons with results presented in terms of the SD, rather than the
Bures metric, which is one-fourth of the SD metric. (This, perhaps fortuitously, gives us a
quite appealingscaleof numerical results.) The probabilities themselves—being computed
asratios—are, of course, invariant under such a scaling, so the “wiggle” is irrelevant for
them.

2. Preliminary analysis of the Kubo–Mori metric

The Morozova–Chentsov function for the Kubo–Mori metric is[14, Eq. (2.18)]

cKM (ρµ, ρν) = log ρν − log ρµ

ρν − ρµ
. (11)

To proceed in the study of the KM metric, we first wrote a MATHEMATICA program,
using the numerical integration command, that succeeded to a high degree of accuracy in
reproducing the formula[14, Eq. (4.11)],

CN = 2N
2−N�(N2/2)

πN/2�(1) . . . �(N + 1)
(12)

for the Hall/Bures normalization constants[37,15] for variousN. (These constants form
one of the two factors—along with the volume of the flag manifold[14, Eqs. (3.22) and
(3.23)]—in determining the total Bures volume.) Then, in the MATHEMATICA program,
we replaced the Morozova–Chentsov function (9) for the Bures metric in the product formula
(10) by the one (11) for the Kubo–Mori function. For the casesN = 3 and 4, we found that
the new numerical results were to several decimal places of accuracy (and in the caseN = 2,
exactly) equal to 2N(N−1)/2 times the comparable result for the Bures metric, given by (12).
This immediately implies that the KM volumes of mixed states are also 2N(N−1)/2 times
the corresponding Bures volumes (and the same for the˜KM and SD volumes), since the
remaining factors involved, that is, the volumes of the flag manifolds are common to both
the Bures and KM cases (as well as to all the monotone metrics). Thus, we arrive at our
first conjecture(cf. [14]),

Vs+n
˜KM

= 64Vs+n
SD = 4π8

315
≈ 120.489, (13)
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Table 1
Estimates based on (four times) the Bures, “average” and Kubo–Mori metrics, using a scrambled Faure–Tezuka
sequence composed of 2 billion points distributed over the 15-dimensional unit hypercube, for quasi-Monte Carlo
numerical integration

Metric Vs+n
˜metric

Vs
˜metric

Ps
metric = Vs/V s+n

Bures 1.88264(1.88264) 0.137884 (0.137817) 0.0732398 (0.0732042)
Average 28.0801(28.0803) 1.33504 (1.33436) 0.0475438 (0.0475194)
Kubo–Mori 120.504(120.531) 4.1412 (4.14123) 0.0343654 (0.0343583)

The results based on the first 1 billion points are given in parentheses.

for which we will obtain some further support in ourmainnumerical analysis (Section 3),
yieldingTable 1.

3. Main analysis

Associated with the minimal (Bures) monotone metric is the operator monotone func-
tion,fBures(t) = (1 + t)/2, and with themaximalmonotone metric, the operator monotone
function,fmax(t) = 2t/(1 + t) [14, Eq. (2.17)]. Theaverageof these two functions, that is,
faverage(t) = (1 + 6t + t2)/(4 + 4t), is also necessarily operator monotone[21, Eq. (20)]
and thus yields a monotone metric (apparently previously uninvestigated). Again employ-
ing our basic ansatz, we used the associated Morozova–Chentsov function—given by the
general formula[20, p. 2667], c(x, y) = 1/yf (x/y):

caverage(ρµ, ρν) = 4(ρµ + ρν)

ρ2
µ + 6ρµρν + ρ2

ν

. (14)

For our main quasi-Monte Carlo analysis, we (simultaneously) numerically integrated
the SD, ˜KM and ˜avg volume elements over a 15-dimensionalhypercubeusing two billion
points for evaluation, with the points forming a scrambledFaure–Tezukasequence[33].
(As in [4], the 15 original variables—12 Euler angles and 3 angles for the eigenvalues[17,
Eq. (38)]—parameterizing the 4× 4 density matrices were first linearly transformed so as
to all lie in the range [0, 1].) This “low-discrepancy” sequence is designed to give a close-
to-uniformcoverage of points over the hypercube, and accordingly yield relatively accurate
numerical integration results.

The results ofTable 1suggest that rejecting the previous conjecture (5)—based on a
much smaller number (65 million) of data points than the 2 billion here—and replacing it
by (perhaps the more “elegant”)

Vs
SD = 1

3σAg ≡ 1
3(

√
2 − 1) ≈ 0.138071, (15)

whereσAg denotes the “silver mean”[38]. (As we proceed from 1 billion to 2 billion
points, some apparent convergence—0.137817 to 0.137884—of the numerical estimate to
the conjecture (15) is observed. It is interesting to note the occurrence of thefirst three
positive integers in (15)—a property which obviously the much-studiedgolden mean,
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(
√

5 − 1)/2 lacks.) By implication then, the conjecture (6) is replaced by

Ps
SD/Bures= Vs

SD

Vs+n
SD

= 1680σAg

π8
≈ 0.0733389. (16)

In addition to simplify our numerical results, we were also encouraged to advance this
conjecture (15) on the basis of certain earlier results. In[8], a number of quite surprisingly
simpleexactresults were obtained usingsymbolicintegration, for certain specialized [low-
dimensional] two-qubit scenarios. This had led us to first investigate in[4] the possibility of
an exact probability of separability also in thefull 15-dimensional setting. (Unfortunately,
as far as we can perceive, the full 15-dimensional problem is not at all amenable—due to
its complexity—to the use of the currently available symbolic integration programs and, it
would appear, possibly for the foreseeable future.)

In particular in[8], a Buresprobabilityof separability equal toσAg had been obtained for
both theq = 1 andq = 1/2 states[39] inferred using the principle of maximum nonadditive
[Tsallis] entropy—and also for an additionallow-dimensional scenario[8, Section II.B.1].
(We have recently reanalyzed this last scenario, but with themaximalmonotone metric, and
also found a probability of separability equal toσAg. The valueσAg also arises as the amount
by which Bell’s inequality is violated[40, Eq. (8)].) Christos and Gherghetta[38] took the
silver mean, as in our study here, to be the positive solution of the equationx + 2 = 1/x—
since having a “mean” value less than 1 was useful in their investigation of trajectory
scaling functions—while others (perhaps more)[41,42] [43, Chapter 22]have defined it as
the positive solution ofx − 2 = 1/x, that is,

√
2 + 1, thereciprocalof ourσAg. (The square

root of two minus one is also apparently a form of “Pisot number”[44]. Similar definitional,
but perhaps not highly significant, ambiguities occur in the (more widespread) usage of the
term “golden mean”, that is (

√
5 ± 1)/2 [45]. (“The characteristic sequence of (

√
5 − 1)/2

(respectively,
√

2 − 1) is called thegolden mean sequence(respectively,Pell sequence)”
[46]. This line of analysis—concerned with the alignment of two words over an alphabet—
originated, apparently, from a 1963 unpublished talk of the prominent [Nobelist] physicist,
D.R. Hofstadter[46].) In [47], demonstrating a conjecture of Gromov, theminimal volume
of R2 (the infinite Euclidean plane) was shown to be 2π/σAg. (An exposition of this result
is given in [48].) In [49] the value of 1/2σAg was obtained for a certain supremum of
volumes.

Further conjectures thatVs
˜avg = 29σAg/9 ≈ 1.33469 andVs

˜KM
= 10σAg ≈ 4.14214

seem worth investigating, based on the results inTable 1. (Our estimate of the ratioVs
˜KM
/V s

SD
from Table 1is 30.0339.) So, we have an implied conjecture that

Ps
KM = Vs

˜KM

Vs+n
˜KM

= 1575σAg

2π8
≈ 0.0343776. (17)

It would then follow thatPs
KM/Ps

SD/Bures= 15/32 = 0.46875.

The convergence to theknownvalue ofVs+n
SD in Table 1seems more pronounced than

any presumptive convergence to the conjectured values of the separable volumes alone,
but the latter are based on considerably smaller samples (roughly, one-quarter the number)
of points than the former (for which, of course,all the 2 billion systematically generated
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500 1000 1500 2000pts.

-0.00006

-0.00004

-0.00002

0.00002

0.00004

0.00006

dev.

Fig. 1. Deviations of the estimated values ofVs+n
SD from the known value—as shown by Sommers and

Życzkowski—ofπ8/5040≈ 1.882645, as the number of points in the scrambled Faure–Tezuka sequence in-
creases from 1 million to 2000 million.

points are used). Clearly, our conjecture (15) can be reexpressed asVn
SD = Vs+n

SD − Vs
SD =

π8/5040− σAg/3 ≈ 1.74457. Our sample estimate forVn
SD is, then, 1.74475.

In Figs. 1–5, we show thedeviationsfrom our conjectured and known values of the
estimates provided by the Faure–Tezuka sequence as the number of points in the sequence
increases from 1 million to 2000 million (i.e., 2 billion).

500 1000 1500 2000pts.

-0.02

0.02

0.04

0.06

0.08
dev.

Fig. 2. Deviations of the estimated values ofVs+n
˜KM

from theconjecturedvalue of 4π8/315≈ 120.489, as the
number of points in the scrambled Faure–Tezuka sequence increases from 1 million to 2000 million.

500 1000 1500 2000pts.

-0.0004

-0.0003

-0.0002

-0.0001

dev.

Fig. 3. Deviations of the estimated values ofVs
SD from theconjecturedvalue ofσAg/3 ≈ 0.138729, as the number

of points in the scrambled Faure–Tezuka sequence increases from 1 million to 2000 million.



P.B. Slater / Journal of Geometry and Physics 53 (2005) 74–97 83

500 1000 1500 2000pts.

-0.003

-0.002

-0.001

0.001

0.002

0.003

dev.

Fig. 4. Deviations of the estimated values ofVs
˜avg from the conjecturedvalue of 29σAg/9 ≈ 1.33469, as the

number of points in the scrambled Faure–Tezuka sequence increases from 1 million to 2000 million.
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-0.015
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-0.005
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Fig. 5. Deviations of the estimated values ofVs
˜KM

from theconjecturedvalue of 10σAg ≈ 4.14214, as the number
of points in the scrambled Faure–Tezuka sequence increases from 1 million to 2000 million.

In Fig. 6, additionally, we showtogetherthe relativedeviations ofVs+n
SD and ofVs+n

˜KM
from the known and conjectured values. In other words, wedividethe estimated values by
the known/conjectured values and subtract 1. The SD curve is extraordinarily better behaved
(“hugging” thex-axis) than is the KM curve. Perhaps this difference is attributable to the
“simpler” (more numerically stable?) nature of the Morozova–Chentsov function in the SD
case (9) than in the KM case (11).

Further plotting of our various results yielded one of particular interest. InFig. 7 we
show the estimates ofVn

˜avg − Vn
SD. Of course, this figure (the scale of which was internally

500 1000 1500 2000# pts.

-0.0004

-0.0002

0.0002

0.0004

0.0006

0.0008
rel. dev.

Fig. 6. Joint plot ofrelativedeviations of estimates ofVs+n
SD andVs+n

˜KM
from their known and conjectured values

of π8/5040 and 4π8/315. The more rugged curve corresponds toVs+n
˜KM

.
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500 1000 1500 2000# pts.

24.997
24.998
24.999

25.001
25.002
25.003

est.

Fig. 7. Estimates of the difference,Vn
˜avg − Vn

SD, as the number of points in the scrambled Faure–Tezuka sequence
increases from 1 million to 2000 million. Note the strong suggestion that the true value is 25 (or close thereto).

500 1000 1500 2000# pts.

0.0005

0.001

0.0015

0.002

dev.

Fig. 8. Deviations of the estimated values ofVs+n
˜avg from the conjectured value of 25π8/8448, as the number of

points in the scrambled Faure–Tezuka sequence increases from 1 million to 2000 million.

chosen by MATHEMATICA, based on the data, and not exogeneously imposed) strongly
suggests thatVn

˜avg − Vn
SD = 25. Now, we found that if we posit

Vs+n
˜avg = 25π8

8448
≈ 28.0792, (18)

(with 8448= 28 · 3 · 11), it would follow that

Vn
˜avg − Vn

SD = 2449π8

887040
− 26

9
σAg ≈ 24.99996094, (19)

(with 887040= 28 · 32 · 5 · 7 · 11), beingstrikinglyclose to the indicated value of 25.
In Fig. 8, we plot the deviations of the estimates ofVs+n

˜avg from its conjectured value (18).

4. Auxiliary analysis

In an independentset of computations (Table 2), employing 415 million points of a
scrambledHalton sequence (as opposed to the scrambled Faure–Tezuka sequence used in
Section 3), we sought to obtain estimates of the probability of separability of two arbitrarily
coupled qubits based on three monotone metrics of interest. The specific method employed
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Table 2
Estimates based on (four times) the Grosse–Krattenthaler–Slater, Wigner–Yanase and Kubo–Mori monotone
metrics, using a scrambled Halton sequence consisting of 415 million points

Metric Vs+n
˜metric

Vs
˜metric

Ps
metric = Vs/V s+n

GKS 5.4237 0.330827 0.0609965
WY 14.5129 0.730567 0.0503391
KM 120.504 4.1791 0.0346801

was that of scrambled Halton sequences[19]. (While there are different scrambled Faure–
Tezuka sequences depending upon the particular random generating matrices used, the
scrambled Halton sequence is unique in nature.)

These correspond to the operator monotone functions,

fGKS(t) = tt/(t−1)

e
; fWY(t) = 1

4
(
√
t + 1)2; fKM (t) = t − 1

log t
. (20)

The subscript GKS denotes the Grosse–Krattenthaler–Slater (“quasi-Bures”) metric (which
yields the common asymptotic minimax and maximin redundancies foruniversalquantum
coding [50, Section IV.B, 51]), the subscript WY, the Wigner–Yanase information met-
ric [52, Section 4] [53,54], and the subscript KM, the Kubo–Mori metric already studied
in Sections 2 and 3. (We had, in fact, intended to study the “Noninformative” mono-
tone metric[55] here instead of the KM metric, but there was a programming oversight
that was only uncovered at the end of the computations). It appears conjecturable that, in
terms of the separable states,Vs

˜GKS
= 4σAg/5 ≈ 0.331371. (The evidence is somewhat of a

weaker nature thatVs
W̃Y

= 7σAg/4 ≈ 0.724874.) Also, in terms of the combined separable

and nonseparable states, it seems possible thatVs+n
˜GKS

= π8/1750≈ 5.42202, with 1750=
2 · 53 · 7. If so, we would havePs

GKS = 1400σAg/π
8 ≈ 0.0611158.

We had hoped to further extend the scrambled Halton sequence used here, but doing so
has so far proved problematical, in terms of available computer resources.

5. Maximal monotone metric

As to themaximalmonotone metric, numerical, together with some analytical evidence,
strongly indicate thatVs+n

max is infinite (unbounded) (as well asVs
max). The supportinganalyt-

ical evidence consists in the fact that for the three-dimensional convex set of 2× 2 density
matrices, parameterized by spherical coordinates [r, θ, φ] in the “Bloch ball”, the volume
element of the maximal monotone metric isr2 sinθ(1 − r2)−3/2, the integral of whichdi-
vergesover the ball. Contrastingly, the volume element of the minimal monotone metric
is r2 sinθ(1 − r2)−1/2, the integral over the ball of which isfinite, namelyπ2. For s ≥ 1
the integral ofr2 sinθ(1 − r2)−s diverges, so the divergence associated with the monotone
metric itself is not simply marginal or “borderline” in character.

To gain further evidence in these regards, one can engage in numerical estimation for the
one-parameter family ofinterpolatingmetrics given by the operator monotone functions

fa(t) = (1 − a)fmax(t) + afBures(t), (21)
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Table 3
Estimates based on the first 96 million points of a scrambled Faure–Tezuka sequence of (four times) a number of
metrics obtained by interpolating between the maximal (a = 0) and minimal (a = 1) monotone metrics

a 1 10−1 10−2 10−3 10−4 10−5 0

V s+n
a 1.88258 7951.27 9.3254× 106 6.0345× 109 3.049× 1012 1.2825× 1015 8.0858× 1039

V s
a 0.13786 148.569 63659 2.0972× 107 6.502× 109 2.2084× 1012 5.229× 1036

Ps
a 0.073229 0.01868 0.006827 0.003475 0.0021325 0.0017219 0.00064669

for which the Morozova–Chentsov functions are of the form

ca(ρµ, ρν) = 2(ρµ + ρν)

a(ρµ − ρν)2 + 4ρµρν
. (22)

Then, one could plot the results as a function of the parametera and study the limita → 0.
(Of course, fora = 1/2, one would recover the “average” monotone metric, studied in
Section 3.)

A preliminary investigation along these lines is reported inTable 3. Based on the first 96
million points of a scrambled Faure–Tezuka sequence, we obtain estimates ofVs+n

a ,Vs
a and

Ps
a = Vs

a/V
s+n
a for (four times) the metrics interpolating between the maximal (a = 0) and

minimal (a = 1) monotone metrics for several values ofa, increasingly close toa = 0. So,
Ps

max would seem quite close to being 0. (However, some clearly numerically anomalous
behavior occurred in passing from 96 million points to 97 million points. The estimates of
Vs+n

max, V
s
max andPs

max jumped to 8.27999× 1040, 7.48026× 1040 and 0.903414, respec-
tively.)

It would be interesting toformally test the hypothesis thatPs
max = 0. (More specifically,

we might ask the question if thelimit of Ps
a asa → 0 is 0.) If it can, in fact, be established

thatPs
max is zero, this might serve as something in the nature of a “counterexample” to

the proposition (a matter of considerable interest in the theoretical analysis of quantum
computation) that for bipartite quantum systems of finite dimension, thereis a separable
neighborhood of the fully mixed state of finite volume[56–59]. (These conclusions were
obtained with the use of either the trace or Hilbert–Schmidt metric—the first of which is
monotone, but not Riemannian, while the second is Riemannian, but not monotone[14].)

We have conducted a test along these lines. Using a simpleMonte Carlo(rather than
quasi-Monte Carlo) scheme, we generated 10 sets of 10 million pointsrandomlydistributed
over the 15-dimensional hypercube. For each of the 10 sets, we obtained estimates ofVs+n

max,
Vs

maxand hencePs
max. Based on the 100 million points the (mean) estimate ofPs

maxwasµ =
1.77038× 10−7 and the standard deviation across the 10 samples,η = 3.692× 10−7. So,
the value 0 lieslessthan one-half (i.e., 0.479510) standard deviations fromµ. For a student,
t-distribution with 9= 10− 1 degrees of freedom, 40% of the probability lies outside
0.261 standard deviations from the mean and 25% outside 0.703 standard deviations. So
there is little evidence here for rejecting a hypothesis thatPs

maxequals 0. For an independent
analysis based on 10 sets of 4 million points, the estimates were roughly comparable, i.e.,
µ = 2.4196× 10−7, η = 5.09683× 10−7. Also, for 10 sets of 5 million points, but setting
the interpolation parameteranot to 0 but to 0.05, there were obtainedµ = 0.00438593 and
η = 0.000229437, withµ/η = 19.1611. So, here onecan decisively reject a hypothesis
that the probability of separability fora = 0.05 is 0.



P.B. Slater / Journal of Geometry and Physics 53 (2005) 74–97 87

Table 4
Monte Carlo analysis based on 15· 315 = 215,233,605 density matrices

Metric Est. S.D. cj.-Est./S.D.

Vs
˜metric

Bures 0.13800 0.00021 0.3354
GKS 0.32990 0.00057 2.5696
WY 0.72811 0.00152 –
Avg 1.3363 0.00287 −0.5821
KM 4.1574 0.02242 −0.6792
NI 848.05 28.997 –
Vs+n

˜metric
Bures 1.88295 0.00102 −0.2985
GKS 5.4232 0.00315 −0.3867
WY 14.5084 0.00943 –
Avg 28.0781 0.01769 0.0618
KM 120.256 0.17489 1.3363
NI 48668.2 421.712 –

Estimates (est.) of the volumes, standard deviations (S.D.) of these estimates and the number of standard deviations
they are away from their conjectured (cj.) or known values, as given inTable 6, are presented.

6. Further Monte Carlo analyses

We also undertook a series ofMonte Carloanalyses, incorporating together the GKS,
Bures, average, Kubo–Mori, Wigner–Yanase, maximal and Noninformative (NI)[55] mono-
tone metrics. (The operator monotone functionf (t) associated with the NI metric is
2(t − 1)2/(1 + t) log2 (t).) We subdivide the unit hypercube into 315 = 14,348,907 sub-
hypercubes, pick arandompoint in each one of these, and then repeat the procedure. . . We
are now able to report inTable 4the results of 15 iterations of this process. Thecentral limit
theoremtells us that for a large enough sample size, the distribution of the sample mean will
approach a normal/Gaussian distribution. This is true for a sample of independent random
variables from any population distribution, so long as the population has afinite standard
deviation. The population standard deviation is equal to the standard deviation of the mean
times the square root of the sample sizeN, which in our case is 15· 315. If one were to use
two standard deviations as a rejection criterion, then the only one of our conjectures that
would be rejected would be that forVs

˜GKS
. (However, the standard deviations in the separa-

ble cases would be approximately four times as large if we only used the number of points
corresponding to separable states, rather than toall states, as we have done here. This would
lead, then, tononeof our conjectures being rejected.) The estimate ofPs

max, obtained in the
same Monte Carlo procedure, was 4.33981× 1042/1.93678· 1052 = 2.24073× 10−10.

7. 14-Dimensional boundaries

7.1. Initial analyses

In the analyses above, we have been concerned with the volume of the 15-dimensional
convex set of 4× 4 density matrices, as measured in terms of a number of monotone metrics.



88 P.B. Slater / Journal of Geometry and Physics 53 (2005) 74–97

We have modified the computer programs involved, so that they would provide estimates
of the volume (“hyperarea”) of the boundary of this set.

Our numerical integrations were conducted over a 14-dimensional hypercube, now al-
lowing one of the original 15 variables (specifically, the hyperspherical angle designatedθ3
in [4, Eq. (2)]) to be determined not by the quasi-Monte Carlo procedure, but by the require-
ment that the determinant of the partial transpose equal zero. This considerably increases
the computational effortperpoint generated.

Our early estimates, in this regard, were: 0.587532 (SD), 6.25466 (˜avg) and 19.8296
( ˜KM), all three based on the first 2,600,000 points of a scrambled Faure–Tezuka sequence;
1.47928 ( ˜GKS), 3.37384 (W̃Y) and 19.9277 (˜KM), all three based on the first 1,500,000
points of a scrambled Halton sequence; and 0.588816 (a = 1), 837.072 (a = 10−1), 414676
(a = 10−2), 1.57088× 108 (a = 10−3), 4.87246× 1010 (a = 10−4), 1.30774× 1013 (a =
10−5), 8.57852× 1027 (a = 0) (all seven based on the first 1,100,000 points of a scrambled
Faure sequence).

Let us note that in terms of the Bures metric—identically one-fourth of the statistical dis-
tinguishability (SD) metric—the pure state [rank 1] boundary of the 4× 4 density matrices,
bothseparable and nonseparable, is known to have volumeπ3/6 ≈ 5.16771. (This is equal
to the volume of a 6-dimensional ball of radius 1 and to the volume of a 3-dimensional com-
plex projective space[14, Section IV.C].) The 14-dimensional[60] submanifold of 4× 4
density matrices of rank 3 has Bures volumeπ7/4324320≈ 6.98444× 10−4. Multiplying
by 214, we obtain the SD counterpart to this of

Bs+n
SD = 512π7

135135
≈ 11.4433. (23)

This is twice (a “double-covering”) the (n − 1)-content (surface area or hyperarea) of the
unit sphere inn = 15 dimensions.

7.2. Further analysis

Subsequently, we joined all the monotone metrics of interest into a single joint analysis,
using an independent Faure–Tezuka sequence of points in the 14-dimensional hypercube.
Up to this point in time, we have generated 35 million points (Table 5). For each of these
points, we sought values of the 15 coordinate—θ3—for which the partial transpose of the
corresponding 4× 4 density matrix had zero determinant. For 24,038,658 of the points at
least one feasible value ofθ3 was found. The even-numbered solutions strongly dominated
the odd-numbered solutions. (This may pertain to the fact that in this series of analyses,
we had used—adjusting accordingly—the range [0, π], rather than [0, π/2], as in our other
analyses, forθ1, θ2 andθ3.) There were 74 points with one solution, 30 with three, and 11
with five, while there were 2,553,168 with two, 21,312,933 with four, 172,429 with six
and 3 with eight.

In Fig. 9, we show the cumulative approximations (in steps of 100,000 points) to the
known value (23) ofBs+n

SD .
We conjecture (Fig. 10) that the component ofBs+n

SD consisting of separable states[61],
that isBs

SD, has the value 43σAg/39 ≈ 0.456697.
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Table 5
Estimates of 14-dimensional boundary volumes based on (four times) the Bures, Grosse–Krattenthaler–Slater,
Wigner–Yanase, average, Kubo–Mori and noninformative metrics, using a scrambled Faure–Tezuka sequence
composed of 35 million points

Metric Bs Bs+n β

Bures 0.456593 11.4443 0.584072
GKS – – 1.45204
WY 3203.81 17576.3 6606.58
Avg 6.60067 246.716 6.20592
KM – – 19.6215
NI – – 4333.36

The concomitant estimate of the SD/Bures probability of separability of such rank-three
states would then be

Πs
SD/Bures= Bs

SD

Bs+n
SD

= 297297σAg

1024π7 ≈ 0.0398167. (24)

This is considerably less than the general probability of separability [of, generically, rank-
fourstates], conjectured in formula (16) to be 0.0733389. The ratio of these two probabilities
is 14157π/81920≈ 0.542194.

50 100 150 200 250 300 350# pts.

-0.001
-0.0005

0.0005
0.001
0.0015
0.002

dev.

Fig. 9. Deviations of the estimated value ofBs+n
SD from theknownvalue of 512π7/135135≈ 11.4433, as the

number of points in a certain scrambled Faure–Tezuka sequence increases from 100,000 to 35 million

50 100 150 200 250 300 350# pts.

-0.004
-0.003
-0.002
-0.001

0.001
0.002
0.003

dev.

Fig. 10. Deviations of the cumulative estimates ofBs
SD from the conjectured value of 43σAg/39 ≈ 0.456697. The

number of points are recorded in steps of 100,000.
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50 100 150 200 250 300 350# pts.

-0.0025
-0.002

-0.0015
-0.001
-0.0005

0.0005

dev.

Fig. 11. Deviations from the conjectured value ofβSD = 55σAg/39 ≈ 0.584147 of the cumulative estimates of
the SD volume of that part of the 14-dimensional boundary of the separable states consisting of nondegenerate
states. The number of points are recorded in steps of 100,000.

In Fig. 11, we show the cumulative approximations to a conjectured value ofβSD =
55σAg/39 ≈ 0.584147 for the 14-dimensional SD boundary of separable two-qubit states
composed of generically rank-four states. (The test for membership in this class is that
the determinant of the partial transpose of the corresponding 4× 4 density matrix be
zero.) Thus, we have an implied conjecture that the 14-dimensional boundary of separa-
ble 4× 4 density matrices hastotal SD-volume ofβSD + Bs

SD = 98σAg/39 ≈ 1.04084.
The fit of our cumulative estimates to this conjecture is shown inFig. 12. Numeri-
cal evidence (Fig. 13) also possibly suggests thatBs

˜avg = 255σAg/16 ≈ 6.60153; that

(Fig. 14) Bs
W̃Y

= 7735σAg ≈ 3203.94; that (Fig. 15) Bs+n

W̃Y
= 29 · 3Bs+n

SD ≈ 17576.9; that
(Fig. 16) β ˜KM = 616σAg/13 ≈ 19.6274; and that (Fig. 17),β ˜GKS = 270σAg/77 ≈ 1.45244
(although, it is intriguing also to consider that 77≈ 78 = 2 · 39). So, surprisingly, the
probability of separability of a rank-three state appears to be much higher, that is,
348,423,075σAg/262144π7 = 32 · 52 · 72 · 11 · 132 · 17σAg/218π7 ≈ 0.182281 using the
Wigner–Yanase metric (but not the average metric, for which we have a sample estimate
of 0.0267541 and a conjecture of 10729125σAg/54992π7 ≈ 0.0267572) than with the Bu-
res or SD metric, in strong contrast to the rank-four case examined earlier (Sections 3
and 4).

50 100 150 200 250 300 350# pts.

-0.004
-0.003
-0.002
-0.001

0.001
0.002

dev.

Fig. 12. Deviations from the conjectured value ofBs
SD + βSD = 98σAg/39 ≈ 1.04084 of the SD-volume of the

total boundary of separable states—composed of nondegenerate (rank-four) and degenerate (rank-three) 4× 4
density matrices. The number of points of the Faure–Tezuka sequence are recorded in steps of 100,000.
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50 100 150 200 250 300 350# pts.
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0.02

0.04

dev.

Fig. 13. Deviations from the conjectured value of 255σAg/16 ≈ 6.60153 of the cumulative estimates ofBs
˜avg.

50 100 150 200 250 300 350# pts.

-40

-20

20

40

dev.

Fig. 14. Deviations from the conjectured value of 7735σAg ≈ 3203.94 of the cumulative estimates ofBs
W̃Y

.

7.3. Levy–Gromov isoperimetric inequality

The scalar curvature of the Bures metric for the 4× 4 density matrices is bounded
below by 570[27, Corollary 3]. However, application of the Levy–Gromov isoperimetric
inequality[62, Appendix C]requires a lower bound ofN on Ricci(Y, Y ), whereRicci is
the Ricci tensor andY runs over all unit tangent vectors, for closed (N + 1)-dimensional
manifolds, we did not immediately know if this condition is satisfied or not (given that one
cannot apparently “control” the Ricci curvature in terms of the [bounded] scalar curvature),

50 100 150 200 250 300 350# pts.

-5

-2.5

2.5

5

7.5

dev.

Fig. 15. Deviations from the conjectured value ofBs+n

W̃Y
of 262144π7/45045= 29 · 3Bs+n

SD ≈ 17576.9.
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0.1

0.2

0.3
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Fig. 16. Deviations from the conjectured value ofβ ˜KM = 616σAg/13 ≈ 19.6274.

but we have found that the inequality is violated, and that the condition isnot satisfied in
the case before us.

To reach this conclusion, we first took the parameterα (strictly following the nota-
tion in [62]) to bePSD/Bures= Vs

SD/V
s+n
SD ≈ 0.0736881, according to our conjecture (6)

above. Then, the functions(α) is the 14-dimensional volume of the boundary sphere∂Bα,
where the volume of the ballBα itself is equal toα vol(S15), andS15 is the standard
15-dimensional sphere. Further, the functionIs15(α) is the ratio ofs(α) ≈ 0.499459 to
vol(S15) = 256π7/2027025≈ 0.381443. The Levy–Gromov inequality then asserts that
Is15(α), which here equals 1.30939, must be less than a certain ratio, which in our case
would— according to our conjectures and known values—be

Bs
Bures+ βBures

Vs+n
Bures

= 2−14(Bs
SD + βSD)

2−15(Vs+n
SD )

≈ 1.10573. (25)

So, the indicated inequality is violated.
At this point, we applied formula (7a) of[27], giving the Ricci tensor based on the Bures

metric fordiagonaldensity matrices,

Ricci(Y,Z) = 3�µ,ν,η

YνµρηZµν

(ρµ + ρν)(ρµ + ρη)(ρν + ρη)
− 3

2
Σµ,ν

YµµZνν

(ρµ + ρν)2
, (26)

50 100 150 200 250 300 350# pts.
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Fig. 17. Deviations from the conjectured value ofβ ˜GKS = 270σAg/77 ≈ 1.45244.
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whereYandZ are tangent vectors (traceless Hermitian matrices). We, in fact found, using
numerical simulations, violations of the lower bound ofN for (N − 1)-dimensional man-
ifolds on the Ricci tensor required by the Levy–Gromov inequality, withN = 14 in our
case. The lowest value we were able to achieve in a series of simulations was 3.45666, so
nonegativevalues were recorded. (The upper value appeared to be unbounded. We also ap-
plied the formula (26) to the 8-dimensional convex set of 3× 3 density matrices and found,
through Monte Carlo simulations, a value of the Ricci curvature as low as 3.00332, so it
appears conjecturable that 3 is the actual lower bound.) Thus, our evidence here indicates
that the inequality is not satisfied, apparently since all the conditions for its application
have not been met. (Using the ansatz elaborated upon earlier inSection 1.3, we also found
numerically for the average and WY monotone metrics that the lower bound ofN = 14 on
the Ricci tensor was violated.)

7.3.1. Area/volume ratios
Let us also note here (cf.[16, Section 6]), in terms of the known values[14] and our con-

jectures, that for the separableplusnonseparable states, the ratio of the SD 14-dimensional
hyperarea to the SD 15-dimensional volume, is

Bs+n
SD

Vs+n
SD

= 8192

429π
≈ 6.07831 (27)

while for only the separable states, it is

Bs
SD + βSD

Vs
SD

= 98

13
≈ 7.53846. (28)

8. Concluding remarks

Needless to say, to the extent any of the conjectures above are, in fact, valid ones, their
remains the apparently formidable task of finding formal/rigorous proofs.

A direct/naive “brute force” strategy ofsymbolicallyintegrating the volume elements
of the various monotone metrics over the 15-dimensional convex sets of separable and
all two-qubit states —while successful for lower-dimensional scenarios[8]— appears to
be quite impractical computationally speaking. It seems that one would have to deal with
multiple ranges of integration given by fourth-degree polynomials. One might speculate
that the integration of the (product) measures for the volume elements of monotone metrics
over the 12 parameterizing Euler angles would yield a result simply proportional toσAg,
common to all monotone metrics, and that additional distinguishing factors would appear
from integrating over the final three variables (θ1, θ2, θ3 in the notation of[4]) parameterizing
the eigenvalues of the 4× 4 density matrices.

Perhaps, in this regard, the work of Sommers andŻyczkowski[14]—which they view
“as a contribution to the theory of random matrices”—in constructing a general formula for
Vs+n

Bures for N-level systems, is extendible to (monotone) metricsother than the Bures. The
volumeVs+n

SD is known, and we have indicated our conjectures thatVs+n
˜KM

= 64Vs+n
SD , V s+n

˜avg =
25π8/8448,Vs+n

˜GKS
= π8/1750 andVs+n

m̃ax = ∞, but we have no similar conjecture, at the
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present, forVs+n

W̃Y
. (The Wigner–Yanase metric corresponds to a space ofconstant curvature

[52].) But there appears to be no “hint” in the literature as to how one mightformallyderive
simply theseparable—as opposed to separableplusnonseparable—volumes for any of the
monotone metrics.

In this study, we have conjectured that the volumes of separable two-qubit states is, as
measured in terms of several monotone metrics of interest, simple multiples of the silver
mean (σAg). It is interesting to point out, it seems, that in certain (“phyllotactic”) models
of the arrangements of (rose) petals, the positions of the petals (in fractions of a full turn)
are given by the fractional parts of simple multiples of thegoldenratio [63, p. 113][64, pp.
122–123](cf. [65, p. 137]). (Of course, it remains possible that we have been somewhat
“overeager” here to find multiple roles forσAg. In this regard, a sceptically inclined reader
might point out that 2000σbr ≈ 6605.55 is quite close to our sample estimate of 6606.58
(Table 5) for βW̃Y and 2σbr ≈ 6.60555 approximates our sample estimate of 6.60067 for
Bs

˜avg. Here,σbr = (3 + √
13)/2 is the “bronze mean”[42].)

In this and other papers[4–8,16], attention has been focused on the matter of determining
the volumes of quantum states in terms of various monotone metrics. An even more con-
siderable body of work concerned with differential geometric properties of the monotone
metrics is devoted to issues of thescalar curvatureof monotone metrics[52,66,67]. For
instance, it has been found that the scalar curvature of theN × N density matricesDN is,
in terms of the Wigner–Yanase metric, (1/4)(N2 − 1)(N2 − 2) [52], while for the Bures
metric, it is 24 forN = 2 and for generalN, no less than (1/2)(5N2 − 4)(N2 − 1), which
value is assumed for the fully mixed state (1/N)I [67]. (For theinfinite-dimensional case of
thermal squeezed states, Twamley[68, Eq. (30)]has found the scalar curvature to be given
by −(8(cosh2 β/4 + 12 sinh4 β/4))/(cosh2 β/2), where the “non-unitary” parameterβ
corresponds to the inverse temperature.) It would certainly be of interest to find linkages
between these two interesting areas of investigation. We note that thescalar curvature
determines theasymptoticbehavior of thevolumeof a Riemannian manifold[52] [69, p. 55,
Corollary 5.5 and Example 3]. Andai [70, Eq. (1)]has recently presented a formula for
the relation between the volume of a geodesic ball centered at the fully mixed state and the
scalar curvature there (see also[71, Eq. (29)]).

Our earlier conjecture (3)—in its unadjusted form—as to the exact value ofVs
SD had

suggested a similar-type conjecture for qubit–qutrit pairs [12]. Now that we have found
compelling numerical evidence to reject (3) (and replace it by (15), we obviously must
be dubious as to the presumed validity of its qubit–qutrit analogue, but presently lack
any notion as to how to replace it. Additionally, our numerical experience so far indicates
that it would be extraordinarily difficult to “pinpoint” (accurately estimate) the value
of the volume of separable qubit–qutrit pairs, since one would then be proceeding in a
(more computationally demanding) much higher dimensional (35 dimensional versus 15
dimensional) space, plus the size of the separable domain one would be estimating would
be much smaller relatively speaking (i.e., relatively fewer sampled 6× 6 density matrices
would be separable vis-á-vis the 4× 4 case).

We summarize inTable 6our present state of presumed knowledge in regard to the
various monotone metrics studied here. Of course, one would aspire to find thefunctionals
that map an operator monotone functionfmetric(t) into Vs

metric, V
s+n
metric, B

s
metric, B

s+n
metric and

βmetric.



P.B
.S
la
te
r
/Jo
u
rn
a
lo
fG
e
o
m
e
try
a
n
d
P
h
ysics

5
3
(2
0
0
5
)
7
4
–
9
7

95

Table 6
Conjectured values (except forVs+n

˜Bures
andBs+n

˜Bures
, which areknown) of Vs

˜metric
, Vs+n

˜metric
, Bs+n

˜metric
, Bs

˜metric
andβ ˜metric for (four times) various monotone metrics, listed in

order of increasing volume size, together with the corresponding operator monotone functions and Morozova–Chentsov functions

Metric f (t) c(ρµ, ρν) Vs V s+n Bs Bs+n β Bs + β

Bures
1 + t

2

2

ρµ + ρν

σAg

3

π8

5040

43σAg

39

512π7

135135

55σAg

39

98σAg

39

GKS
tt/(t−1)

e

e(ρµ/ρν)ρµ/(ρν−ρµ)

ρν

4σAg

5

π8

1750
? ?

270σAg

77
?

WY
(
√
t + 1)2

4

4

(
√
ρµ + √

ρν)2

7σAg

4
? 7735σAg

262144π7

45045
15950σAg 23685σAg

Avg
1 + 6t + t2

4 + 4t

4(ρµ + ρν)

ρ2
µ + 6ρµρν + ρ2

ν

29σAg

9

25π8

8448

255σAg

16

3437π7

42075
15σAg

495σAg

16

KM
t − 1

log t

log(ρµ/ρν)

ρµ − ρν
10σAg

4π8

315
? ?

616σAg

13
?

NI
2(t − 1)2

(1 + t)(log t)2

(ρµ + ρν) log2(ρµ/ρν)

2(ρµ − ρν)2
? ? ? ? ? ?

Maximal
2t

1 + t

ρµ + ρν

2ρµρν
∞ ∞ ∞ ∞ ∞ ∞

For the various denominators, we have the interesting prime decompositions: 5040= 24 · 32 · 5 · 7; 1750= 2 · 53 · 7; 8448= 28 · 3 · 11; 315= 32 · 5 · 7; 135135=
33 · 5 · 7 · 11 · 13; 42075= 32 · 52 · 11 · 17 and 45045= 32 · 5 · 7 · 11 · 13. As pertains to numerators: 512= 29; 7735= 5 · 7 · 13 · 17; 262144= 218; 15950= 2 · 52 ·
11 · 29; 255= 3 · 5 · 17; 495= 33 · 5 · 11; 270= 2 · 33 · 5; and 616= 23 · 7 · 11.
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